login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of strongly connected labeled digraphs on n nodes with an even number of edges.
1

%I #19 Aug 30 2019 03:44:01

%S 1,1,10,806,282552,367387448,1761545808144,31759604694834608,

%T 2200205489188051324800,595216852658907342647881088,

%U 635231932478914399659212340198144,2690533983413127566229805840755699623168,45382894419701545228622064475653706686181248000,3054532231410772852023213016232868881612380320979954688

%N Number of strongly connected labeled digraphs on n nodes with an even number of edges.

%H V. A. Liskovets, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/LISK/Derseq.html">Some easily derivable sequences</a>, J. Integer Sequences, 3 (2000), #00.2.2.

%F a(n) = (A003030(n)+(n-1)!)/2.

%t b[n_] := b[n] = If[n == 1, 1, 2^(n*(n - 1)) - Sum[Binomial[n, j]*2^((n - 1)*(n - j))*b[j], {j, 1, n - 1}]];

%t c[1] = 1; c[n_] := c[n] = b[n] + Sum[Binomial[n - 1, j - 1]*b[n - j]*c[j], {j, 1, n - 1}];

%t a[n_] := (c[n] + (n - 1)!)/2;

%t Table[a[n], {n, 1, 15}] (* _Jean-François Alcover_, Aug 30 2019, after _Vaclav Kotesovec_ in A003030 *)

%Y Cf. A054945.

%K nonn,easy

%O 1,3

%A _N. J. A. Sloane_, May 24 2000

%E More terms from _Vladeta Jovovic_, Jul 15 2000

%E More terms from _Jean-François Alcover_, Aug 30 2019