login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of complementary pairs of directed graphs on n nodes. Also number of unlabeled digraphs with n nodes and an even number of arcs.
3

%I #20 Aug 26 2019 08:05:38

%S 1,2,10,114,4872,770832,441038832,896679948304,6513978501814144,

%T 170630215981070456064,16261454692532635025585792,

%U 5683372715412701087902846672384,7334542846356464937798016155801130496,35157828307617499760694672217473135511928832

%N Number of complementary pairs of directed graphs on n nodes. Also number of unlabeled digraphs with n nodes and an even number of arcs.

%H Andrew Howroyd, <a href="/A054928/b054928.txt">Table of n, a(n) for n = 1..50</a>

%H V. A. Liskovets, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/LISK/Derseq.html">Some easily derivable sequences</a>, J. Integer Sequences, 3 (2000), #00.2.2.

%F Average of A000273 and A003086.

%t permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];

%t edges[v_] := Sum[2*GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[v - 1];

%t b[n_] := (s = 0; Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]}]; s/n!);

%t edges4[v_] := 4 Sum[Sum[GCD[v[[i]], v[[j]]], {j, 1, i - 1}], {i, 2, Length[v]}] + Sum[2 v[[i]] - 1, {i, 1, Length[v]}];

%t c[n_] := (s = 0; Do[s += permcount[2 p]*2^edges4[p]*If[OddQ[n], n *4^Length[p], 1], {p, IntegerPartitions[n/2 // Floor]}]; s/n!);

%t a[n_] := (b[n] + c[n])/2;

%t Array[a, 14] (* _Jean-François Alcover_, Aug 26 2019, using _Andrew Howroyd_'s code for b=A000273 and c=A003086 *)

%Y Cf. A000273, A003086, A007869, A054960, A055969.

%K nonn,easy

%O 1,2

%A _N. J. A. Sloane_, May 24 2000

%E More terms from _Vladeta Jovovic_, Jul 19 2000

%E Terms a(14) and beyond from _Andrew Howroyd_, Sep 17 2018