%I #9 Oct 30 2018 20:14:27
%S 1669,1789,1871,1873,1999,2383,2477,2539,2543,3461,3463,4219,4519,
%T 5281,5419,5443,6047,6661,7247,7309,7759,7879,7937,8171,8527,9619,
%U 9623,11059,11399,11597,11833,12413,13879,14831,15139,15559,16063,16339
%N Fifth term of strong prime quintets: p(m-3)-p(m-4) > p(m-2)-p(m-3) > p(m-1)-p(m-2) > p(m)-p(m-1).
%C Second member of pairs of consecutive primes in A054807 (4th term of strong prime quartets). - _M. F. Hasler_, Oct 27 2018
%H Harvey P. Dale, <a href="/A054812/b054812.txt">Table of n, a(n) for n = 1..1000</a>
%F a(n) = nextprime(A054811(n)); A054811 = {m = A054807(n) | prevprime(m) = A054807(n-1)}; nextprime = A151800, prevprime = A151799. - M. F. Hasler, Oct 27 2018
%t spqQ[c_]:=Module[{d=Differences[c]},d[[1]]>d[[2]]>d[[3]]>d[[4]]]; Transpose[ Select[Partition[Prime[Range[2000]],5,1],spqQ]][[5]] (* _Harvey P. Dale_, Jan 01 2013 *)
%Y Cf. A051634, A051635; A054800 .. A054803: members of balanced prime quartets (= 4 consecutive primes in arithmetic progression); A054804 .. A054818: members of strong prime quartets, quintets, sextets; A054819 .. A054840: members of weak prime quartets, quintets, sextets, septets.
%K nonn
%O 1,1
%A _Henry Bottomley_, Apr 10 2000