%I #9 Oct 28 2018 09:11:25
%S 1667,1787,1867,1871,1997,2381,2473,2531,2539,3457,3461,4217,4517,
%T 5279,5417,5441,6043,6659,7243,7307,7757,7877,7933,8167,8521,9613,
%U 9619,11057,11393,11593,11831,12409,13877,14827,15137,15551,16061,16333
%N Fourth term of strong prime quintets: p(m-2)-p(m-3) > p(m-1)-p(m-2) > p(m)-p(m-1) > p(m+1)-p(m).
%C First member of pairs of consecutive primes in A054807 (4th of strong prime quartets). - _M. F. Hasler_, Oct 27 2018
%H M. F. Hasler, <a href="/A054811/b054811.txt">Table of n, a(n) for n = 1..2000</a>, Oct 27 2018
%F a(n) = nextprime(A054810(n)) = prevprime(A054812(n)), nextprime = A151800, prevprime = A151799; A054811 = {m = A054807(n) | nextprime(m) = A054807(n+1)}. - _M. F. Hasler_, Oct 27 2018
%Y Cf. A051634, A051635; A054800 .. A054803: members of balanced prime quartets (= 4 consecutive primes in arithmetic progression); A054804 .. A054818: members of strong prime quartets, quintets, sextets; A054819 .. A054840: members of weak prime quartets, quintets, sextets, septets.
%K nonn
%O 1,1
%A _Henry Bottomley_, Apr 10 2000