Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #49 May 08 2022 13:01:49
%S 0,1,3,34,987,75025,14930352,7778742049,10610209857723,
%T 37889062373143906,354224848179261915075,8670007398507948658051921,
%U 555565404224292694404015791808,93202207781383214849429075266681969,40934782466626840596168752972961528246147
%N (n^2)-th Fibonacci number.
%C The sequence (5*a(n+1))_{n>=1} = (5, 15, 170, 4935, ...) is realizable in the sense that there is a self-map on a set T:X->X with the property that a(n) = #{x in X:T^nx=x} for all n >= 1. This is the simplest illustrative example of two different phenomena. The Fibonacci sequence sampled along an odd power cannot be made realizable after multiplication by a constant; the Fibonacci sequence sampled along an even power becomes realizable after multiplication by 5 (the discriminant of the sequence). This is now known to be an instance of a more general phenomenon in the following sense. If (a(n)) is a linear recurrence sequence whose characteristic polynomial F has simple zeros then the sequence (Ma(n^s)) satisfies the Dold congruence, where M=|discriminant(F)| and s is an integer multiple of the exponent of the Galois group of the splitting field of F over the rationals. Under an additional hypothesis on the signs of the coefficients of F, the sequence (Ma(n^s)) is realizable. - _Thomas Ward_, May 06 2022
%H Seiichi Manyama, <a href="/A054783/b054783.txt">Table of n, a(n) for n = 0..69</a>
%H Jakub Byszewski, Grzegorz Graff and Thomas Ward, <a href="https://londmathsoc.onlinelibrary.wiley.com/doi/full/10.1112/blms.12531">Dold sequences, periodic points, and dynamics</a>, arXiv:2007.04031 [math.DS], 2020-2021; Bull. Lond. Math. Soc. 53 (2021), no. 5, 1263-1298.
%H T. Kotek and J. A. Makowsky, <a href="http://arxiv.org/abs/1309.4020">Recurrence Relations for Graph Polynomials on Bi-iterative Families of Graphs</a>, arXiv preprint arXiv:1309.4020 [math.CO], 2013.
%H Florian Luca and Tom Ward, <a href="https://arxiv.org/abs/2204.02711">On (almost) realizable subsequences of linearly recurrent sequences</a>, arXiv:2204.02711 [math.NT], 2022.
%H Piotr Miska and Tom Ward, <a href="https://arxiv.org/abs/2102.07561">Stirling numbers and periodic points</a>, arXiv:2102.07561 [math.NT], 2021; Acta Arith. 201 (2021), no. 4, 421-435.
%H Patrick Moss and Tom Ward, <a href="https://arxiv.org/abs/2011.13068">Fibonacci along even powers is (almost) realizable</a>, arXiv:2011.13068 [math.NT], 2020; Fibonacci Quart. 60 (2022), no. 1, 40-47.
%F a(n) = Sum_{k=1..T(n-1)+1} binomial(T(n-1), k-1)*F(n-1+k), where F(n) is A000045 and T(n) is A000217. - _Tony Foster III_, Sep 03 2018
%p a:= n-> (<<0|1>, <1|1>>^(n^2))[1, 2]:
%p seq(a(n), n=0..15); # _Alois P. Heinz_, Jun 10 2018
%t Table[Fibonacci[n^2], {n, 15}] (* _Vladimir Joseph Stephan Orlovsky_, Feb 08 2012 *)
%o (Magma) [Fibonacci(n^2): n in [0..50]]; // _Vincenzo Librandi_, Apr 09 2011
%o (PARI) a(n)=fibonacci(n^2) \\ _Charles R Greathouse IV_, Oct 07 2016
%Y Cf. (n^k)-th Fibonacci number: A000045 (k=1), this sequence (k=2), A182149 (k=3), A250490 (k=4), A250491 (k=5), A250492 (k=6), A250493 (k=7), A250494 (k=8).
%Y Cf. A081667.
%Y Cf. A341617 shows a similar property for the Stirling numbers of the second kind.
%K nonn
%O 0,3
%A _Jeff Burch_, May 22 2000