%I #19 Feb 19 2022 14:21:43
%S 1,1,2,2,1,2,3,2,6,1,2,12,3,2,4,16,6,3,2,6,22,2,5,12,18,6,28,2,30,8,
%T 16,3,6,6,3,12,2,40,6,7,6,22,46,4,21,5,16,12,26,18,6,6,28,58,2,4,30,6,
%U 16,12,66,16,22,3,70,6,72,6,10,6,12,39,4,54,40,41
%N Multiplicative order of 11 mod n, where gcd(n, 11) = 1.
%C The original version "Number of powers of 11 modulo n" that was similar to A054703-A054717 is now in A351524. - _Georg Fischer_, Feb 13 2022
%t MultiplicativeOrder[11, #] & /@ Select[ Range@ 90, GCD[11, #] == 1 &] (* _Robert G. Wilson v_, Apr 05 2011 *)
%o (PARI) lista(nn) = {for(n=1, nn, if (gcd(n, 11) == 1, print1(znorder(Mod(11, n)), ", ")););} \\ _Michel Marcus_, Feb 09 2015
%Y Cf. A053446 (of 3 mod n), A053448 (5), A053449 (6), A053450 (7), A053452 (9).
%Y Cf. A351524.
%K easy,nonn
%O 1,3
%A _Henry Bottomley_, Apr 20 2000
%E Corrected by _Michel Marcus_, Feb 11 2015