

A054671


Denominators of (reduced) coefficients of Laurent series for conformal mapping from exterior of unit disk onto exterior of Mandelbrot set.


1



2, 8, 4, 128, 1, 1024, 16, 32768, 1, 262144, 32, 4194304, 1, 33554432, 512, 2147483648, 1, 17179869184, 2048, 274877906944, 64, 2199023255552, 2048, 70368744177664, 1, 562949953421312, 131072, 9007199254740992, 256
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Sum converges very slowly: 10^118 terms to get first two digits, 10^1181 for three digits.


REFERENCES

John H. Ewing and G. Schober, "The area of the Mandelbrot set", Numer. Math. vol. 61, pp. 5972, 1992.


LINKS

Table of n, a(n) for n=0..28.
Adam Majewski, Maxima code for this sequence
Robert P. Munafo, Laurent Series
Eric Weisstein's World of Mathematics, Mandelbrot Set


MAPLE

Munafo site gives Maple code.


CROSSREFS

Cf. A054670.
Sequence in context: A213456 A210422 A085568 * A203269 A011058 A229981
Adjacent sequences: A054668 A054669 A054670 * A054672 A054673 A054674


KEYWORD

frac,nonn


AUTHOR

Robert Munafo, Apr 18 2000


EXTENSIONS

Extended by Eric W. Weisstein, Nov 27 2005
Definition corrected by Adam Majewski (adammaj1(AT)o2.pl), Nov 17 2006


STATUS

approved



