login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Triangle T(n, k) giving coefficients in expansion of n! * Sum_{i=0..n} binomial(x - n, i) in powers of x.
5

%I #29 Nov 27 2021 09:19:40

%S 1,1,0,1,-3,4,1,-9,32,-36,1,-18,131,-426,528,1,-30,375,-2370,7544,

%T -9600,1,-45,865,-8955,52414,-163800,213120,1,-63,1729,-26565,245854,

%U -1366932,4220376,-5574240,1,-84,3122,-66696,893249,-7664916,41096908,-125747664,167973120

%N Triangle T(n, k) giving coefficients in expansion of n! * Sum_{i=0..n} binomial(x - n, i) in powers of x.

%H Seiichi Manyama, <a href="/A054649/b054649.txt">Rows n = 0..139, flattened</a>

%F T(n, k) = n! * [x^(n - k)] hypergeom([-n, -x + n], [-n], -1). - _Peter Luschny_, Nov 27 2021

%e Triangle begins:

%e 1;

%e 1, 0;

%e 1, -3, 4;

%e 1, -9, 32, -36;

%e 1, -18, 131, -426, 528;

%e 1, -30, 375, -2370, 7544, -9600;

%e 1, -45, 865, -8955, 52414, -163800, 213120;

%e 1, -63, 1729, -26565, 245854, -1366932, 4220376, -5574240;

%e ...

%e From _Peter Luschny_, Nov 27 2021: (Start)

%e The row reversed triangle can be seen as the coefficients of a sequence of monic polynomials with monomials sorted in ascending order which start:

%e [0] 1;

%e [1] x;

%e [2] 4 - 3*x + x^2;

%e [3] -36 + 32*x - 9*x^2 + x^3;

%e [4] 528 - 426*x + 131*x^2 - 18*x^3 + x^4;

%e [5] -9600 + 7544*x - 2370*x^2 + 375*x^3 - 30*x^4 + x^5; (End)

%p # Some older Maple versions are known to have a bug in the hypergeom function.

%p with(ListTools): with(PolynomialTools):

%p CoeffList := p -> op(Reverse(CoefficientList(simplify(p), x))):

%p p := k -> k!*hypergeom([-k, -x + k], [-k], -1):

%p seq(CoeffList(p(k)), k = 0..8); # _Peter Luschny_, Nov 27 2021

%t c[n_, k_] := Product[n-i, {i, 0, k-1}]/k!; row[n_] := CoefficientList[ n!*Sum[c[x-n, k], {k, 0, n}], x] // Reverse; Table[ row[n], {n, 0, 8}] // Flatten (* _Jean-François Alcover_, Oct 04 2012 *)

%o (PARI) row(n) = Vec(n!*sum(k=0, n, binomial(x-n, k))); \\ _Seiichi Manyama_, Sep 24 2021

%Y Cf. A008275, A008276, A048994, A054651, A054655.

%K sign,tabl,nice

%O 0,5

%A _N. J. A. Sloane_, Apr 16 2000