login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of ways to color vertices of a 10-gon using <= n colors, allowing only rotations.
8

%I #17 Sep 15 2015 12:05:08

%S 0,1,108,5934,104968,976887,6047412,28249228,107377488,348684381,

%T 1000010044,2593758618,6191761368,13785886387,28925519364,57665115096,

%U 109951267744,201599532153,357046911756,613106873542,1024000320168,1667988506415,2655992794708

%N Number of ways to color vertices of a 10-gon using <= n colors, allowing only rotations.

%H T. D. Noe, <a href="/A054624/b054624.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).

%F Sum_{d|10} phi(d)*n^(10/d)/10 = n*(n+1)*(n^8-n^7+n^6-n^5+n^4+4)/10.

%F G.f.: x*(100*x^8 +4783*x^7 +45547*x^6 +130963*x^5 +131119*x^4 +45469*x^3 +4801*x^2 +97*x+1) / (1-x)^11. - _Colin Barker_, Jun 12 2012

%Y Row 10 of A075195.

%K nonn,easy

%O 0,3

%A _N. J. A. Sloane_, Apr 16 2000

%E Edited by _Christian G. Bower_, Sep 07 2002