login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Table related to labeled rooted trees, cycles and binary trees.
6

%I #73 Jun 28 2023 22:38:41

%S 1,1,1,2,4,3,6,18,25,15,24,96,190,210,105,120,600,1526,2380,2205,945,

%T 720,4320,13356,26488,34650,27720,10395,5040,35280,128052,305620,

%U 507430,575190,405405,135135

%N Table related to labeled rooted trees, cycles and binary trees.

%C The left column is (n-1)!, the right column is (2n-3)!!, the total of each row is n^(n-1).

%C Constant terms of polynomials related to Ramanujan psi polynomials (see Zeng reference).

%C From _Peter Bala_, Sep 29 2011: (Start)

%C Differentiating n times the Lambert function W(x) = Sum_{n>=1} n^(n-1)*x^n/n! with respect to x yields (d/dx)^n W(x) = exp(n*W(x))/(1-W(x))^n*R(n,1/(1-W(x))), where R(n,x) is the n-th row polynomial of this triangle. The first few values are R(1,x) = 1, R(2,x) = 1+x, R(3,x) = 2+4*x+3*x^2. The Ramanujan polynomials R(n,x) are strongly x-log-convex [Chen et al.].

%C Shor and Dumont-Ramamonjisoa have proved independently that the coefficient of x^k in R(n,x) counts rooted labeled trees on n vertices with k improper edges. Drake, Example 1.7.3, gives another combinatorial interpretation for this triangle as counting a family of labeled trees.

%C (End)

%H J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, <a href="http://arxiv.org/abs/1307.2010">Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure</a>, arXiv:1307.2010 [math.CO], 2013-2014.

%H W. Chen, L. X. W. Wang and A. L. B. Yang, <a href="http://arxiv.org/abs/0806.3641">Recurrence Relations for Strongly q-Log-Convex Polynomials</a>, arXiv:0806.3641v1 [math.CO], 2008.

%H D. Dominici, <a href="http://arxiv.org/abs/math/0501052">Nested derivatives: A simple method for Computing series expansions of inverse functions.</a> arXiv:math/0501052v2 [math.CA], 2005.

%H B. Drake, <a href="http://people.brandeis.edu/~gessel/homepage/students/drakethesis.pdf">An inversion theorem for labeled trees and some limits of areas under lattice paths</a>, A dissertation presented to the Faculty of the Graduate School of Arts and Sciences of Brandeis University.

%H Dominique Dumont and Armand Ramamonjisoa, <a href="https://doi.org/10.37236/1275">Grammaire de Ramanujan et Arbres de Cayley</a>, Electr. J. Combinatorics, Volume 3, Issue 2 (1996) R17 (see page 16).

%H D. J. Jeffrey, G. A. Kalugin, and N. Murdoch, <a href="https://www.uwo.ca/apmaths/faculty/jeffrey/pdfs/JeffreySYNASC2015paper17.pdf">Lagrange inversion and Lambert W</a>, Preprint 2015.

%H M. Josuat-Vergès, <a href="http://arxiv.org/abs/1310.7531">Derivatives of the tree function</a>, arXiv preprint arXiv:1310.7531 [math.CO], 2013.

%H Peter W. Shor, <a href="https://doi.org/10.1016/0097-3165(95)90022-5">A new proof of Cayley's formula for counting labeled trees</a>, J. Combin. Theory Ser. A 71 (1995), no. 1, 154-158.

%H Jiang Zeng, <a href="http://math.univ-lyon1.fr/homes-www/zeng/public_html/paper/Cayley.ps">A Ramanujan sequence that refines the Cayley formula for trees</a>, Ramanujan J., 3(1999) 1, 45-54.

%F The polynomials p_n = Sum a[n, k]x^k satisfy p_1=1 and p_(n+1) = x*x*dp_n/dx+n*(1+x)*p_n.

%F From _Peter Bala_, Sep 29 2011: (Start)

%F E.g.f.: series reversion with respect to x of (1-t+(t-1+x*t)*exp(-x)) = x + (1+t)*x^2/2! + (2+4*t+3*t^2)*x^3/3! + ....

%F The sequence of shifted row polynomials {p_n(1+t)}n>=1 begins [1,2+t,9+10*t+3*t^2,...]. These are the row polynomials of A048160.

%F (End)

%F Let f(x) = exp(x)/(1-t*x). The e.g.f. A(x,t) = x + (1+t)*x^2/2! + (2+4*t+3*t^2)*x^3/3! + ... satisfies the autonomous differential equation dA/dx = f(A). The n-th row polynomial (n>=1) equals D^(n-1)(f(x)) evaluated at x = 0, where D is the operator f(x)*d/dx (apply [Dominici, Theorem 4.1]). - _Peter Bala_, Nov 09 2011

%F The polynomials (1+t)^(n-1)*p_n(1/(1+t)) are (up to sign) the row polynomials of A042977. - _Peter Bala_, Jul 23 2012

%F Let q_n = Sum_{k>=0} a(n,k)*t^(n-k), with q_0 = 1. (So q_1=t, q_2 = t+t^2, and q_3 = 3*t + 4*t^2 + 2*t^3.) Then Sum_{n>=0} q_n*x^n/n! = t - W((t-1-t^2*x)*exp(t-1)), where W is the Lambert function. - _Ira M. Gessel_, Jan 06 2012

%e Triangle begins:

%e {1},

%e {1, 1},

%e {2, 4, 3},

%e {6, 18, 25, 15},

%e ...

%t p[1] = 1; p[n_] := p[n] = Expand[x^2*D[p[n-1], x] + (n-1)(1+x)p[n-1]]; Flatten[ Table[ CoefficientList[ p[n], x], {n, 1, 8}]] (* _Jean-François Alcover_, Jul 22 2011 *)

%t Clear[a];

%t a[1, 0] = 1;

%t a[n_, k_] /; k < 0 || k >= n := 0

%t a[n_, k_] /; 0 <= k <= n - 1 :=

%t a[n, k] = (n - 1) a[n - 1, k] + (n + k - 2) a[n - 1, k - 1]

%t Table[a[n, k], {n, 20}, {k, 0, n - 1} (* _David Callan_, Oct 14 2012 *)

%Y Cf. A000169, A001147, A075856, A048159, A048160, A042977.

%K nonn,tabl

%O 1,4

%A _F. Chapoton_, Apr 14 2000