login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of subsequences of {1..n} such that all differences of pairs of terms are distinct (i.e., number of Golomb rulers on {1..n}).
8

%I #32 Feb 15 2024 15:15:08

%S 1,3,6,12,21,35,56,90,139,215,316,462,667,961,1358,1918,2665,3693,

%T 5034,6844,9187,12365,16416,21786,28707,37721,49082,63920,82639,

%U 106721,136674,174894,222557,283107,357726,451574,567535,712855,890404,1112080,1382415

%N Number of subsequences of {1..n} such that all differences of pairs of terms are distinct (i.e., number of Golomb rulers on {1..n}).

%H Alois P. Heinz, <a href="/A054578/b054578.txt">Table of n, a(n) for n = 1..100</a>

%H <a href="/index/Go#Golomb">Index entries for sequences related to Golomb rulers</a>

%F a(n) = A143823(n) - 1. - _Carl Najafi_, Jan 16 2013

%e a(4) = 12: [1], [2], [3], [4], [1,2], [1,3], [1,4], [2,3], [2,4], [3,4], [1,2,4], [1,3,4]. - _Alois P. Heinz_, Jan 16 2013

%p b:= proc(n, s) local sn, m;

%p if n<1 then 1

%p else sn:= [s[], n]; m:= nops(sn);

%p `if` (m*(m-1)/2 = nops (({seq (seq (sn[i]-sn[j],

%p j=i+1..m), i=1..m-1)})), b(n-1, sn), 0) +b(n-1, s)

%p fi

%p end:

%p a:= proc(n) a(n):= b(n-1, [n]) +`if` (n=0, -1, a(n-1)) end:

%p seq(a(n), n=1..30); # _Alois P. Heinz_, Jan 16 2013

%t b[n_, s_List] := b[n, s] = Module[{sn, m}, If[n < 1, 1, sn = Append[s, n]; m = Length[sn]; If[m(m - 1)/2 == Length @ Union @ Flatten @ Table[ Table[ sn[[i]] - sn[[j]], {j, i + 1, m}], {i, 1, m - 1}], b[n - 1, sn], 0] + b[n - 1, s]]];

%t a[n_] := a[n] = b[n - 1, {n}] + If [n == 0, -1, a[n - 1]];

%t Table[Print[n, " ", a[n]]; a[n], {n, 1, 41}] (* _Jean-François Alcover_, Apr 28 2020, after _Alois P. Heinz_ *)

%Y Cf. A003022, A036501, A143823.

%Y Partial sums of A308251.

%K nonn

%O 1,2

%A _John W. Layman_, Apr 11 2000

%E More terms from _Carl Najafi_, Jan 15 2013