login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n*(n^2 - 1)*(n + 2)*(n^2 + 4*n + 6)/72.
4

%I #36 Oct 12 2022 05:20:48

%S 0,0,6,45,190,595,1540,3486,7140,13530,24090,40755,66066,103285,

%T 156520,230860,332520,468996,649230,883785,1185030,1567335,2047276,

%U 2643850,3378700,4276350,5364450,6674031,8239770,10100265,12298320,14881240

%N a(n) = n*(n^2 - 1)*(n + 2)*(n^2 + 4*n + 6)/72.

%C Number of labeled pure 2-complexes on n nodes with 2 2-simplexes.

%D L. Berzolari, Allgemeine Theorie der Höheren Ebenen Algebraischen Kurven, Encyclopädie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen. Band III_2. Heft 3, Leipzig: B. G. Teubner, 1906. p. 353.

%H Vincenzo Librandi, <a href="/A054563/b054563.txt">Table of n, a(n) for n = 0..10000</a>

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7,1).

%F C(C(n, 3), 2) = 6*C(n, 4) + 15*C(n, 5) + 10*C(n, 6) = n*(n-1)*(n-2)*(n-3)*(n^2+2)/72.

%F a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7); a(2)=0, a(3)=0, a(4)=6, a(5)=45, a(6)=190, a(7)=595, a(8)=1540. - _Harvey P. Dale_, Sep 20 2011

%F G.f.: -((x^2*(x*(x+3)+6))/(x-1)^7). - _Harvey P. Dale_, Sep 20 2011

%F a(n) = (binomial(n+2,3)^2 - binomial(n+2,3))/2, n > 0. - _Gary Detlefs_, Nov 23 2011

%F a(n) = Sum_{k=1..3} (-1)^(k+1)*binomial(n+2,3+k)*binomial(n+2,3-k). - _Gerry Martens_, Oct 11 2022

%t Binomial[Binomial[Range[2,40],3],2] (* or *) LinearRecurrence[ {7,-21,35,-35,21,-7,1},{0,0,6,45,190,595,1540},40] (* _Harvey P. Dale_, Sep 20 2011 *)

%o (Sage) [(binomial(binomial(n,3),2)) for n in range(2, 34)] # _Zerinvary Lajos_, Nov 30 2009

%o (Magma) [n*(n^2 - 1)*(n + 2)*(n^2 + 4*n + 6)/72: n in [0..40]]; // _Vincenzo Librandi_, Sep 21 2011

%o (PARI) a(n)=n*(n^2-1)*(n+2)*(n^2+4*n+6)/72 \\ _Charles R Greathouse IV_, Feb 19 2017

%K easy,nonn,nice

%O 0,3

%A _Vladeta Jovovic_, Apr 10 2000

%E More terms from _James A. Sellers_, Apr 11 2000

%E Offset changed from 2 to 0 by _Vincenzo Librandi_, Sep 21 2011