login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 4*n^2 - 3*n + 1.
56

%I #80 Jun 01 2024 11:31:41

%S 1,2,11,28,53,86,127,176,233,298,371,452,541,638,743,856,977,1106,

%T 1243,1388,1541,1702,1871,2048,2233,2426,2627,2836,3053,3278,3511,

%U 3752,4001,4258,4523,4796,5077,5366,5663,5968,6281,6602,6931,7268,7613,7966,8327

%N a(n) = 4*n^2 - 3*n + 1.

%C Also indices in any square spiral organized like A054551.

%C Equals binomial transform of [1, 1, 8, 0, 0, 0, ...]. - _Gary W. Adamson_, May 11 2008

%C Ulam's spiral (E spoke). - _Robert G. Wilson v_, Oct 31 2011

%C For n > 0: left edge of the triangle A033293. - _Reinhard Zumkeller_, Jan 18 2012

%H Harvey P. Dale, <a href="/A054552/b054552.txt">Table of n, a(n) for n = 0..1000</a>

%H Scientific American, <a href="/A244677/a244677.jpg">Cover of the March 1964 issue</a>

%H Leo Tavares, <a href="/A054552/a054552.jpg">Illustration: Hexagon/Square Pairs</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F G.f.: (1 - x + 8*x^2)/(1-x)^3.

%F a(n) = 8*n + a(n-1) - 7 (with a(0)=1). - _Vincenzo Librandi_, Aug 07 2010

%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=1, a(1)=2, a(2)=11. - _Harvey P. Dale_, Oct 10 2011

%F E.g.f.: exp(x)*(1 + x + 4*x^2). - _Stefano Spezia_, May 14 2021

%F a(n) = A003215(n-1) + A000290(n). - _Leo Tavares_, Jul 21 2022

%e The spiral begins:

%e .

%e 197-196-195-194-193-192-191-190-189-188-187-186-185-184-183

%e | |

%e 198 145-144-143-142-141-140-139-138-137-136-135-134-133 182

%e | | | |

%e 199 146 101-100--99--98--97--96--95--94--93--92--91 132 181

%e | | | | | |

%e 200 147 102 65--64--63--62--61--60--59--58--57 90 131 180

%e | | | | | | | |

%e 201 148 103 66 37--36--35--34--33--32--31 56 89 130 179

%e | | | | | | | | | |

%e 202 149 104 67 38 17--16--15--14--13 30 55 88 129 178

%e | | | | | | | | | | | |

%e 203 150 105 68 39 18 5---4---3 12 29 54 87 128 177

%e | | | | | | | | | | | | | |

%e 204 151 106 69 40 19 6 1---2 11 28 53 86 127 176

%e | | | | | | | | | | | | |

%e 205 152 107 70 41 20 7---8---9--10 27 52 85 126 175

%e | | | | | | | | | | |

%e 206 153 108 71 42 21--22--23--24--25--26 51 84 125 174

%e | | | | | | | | |

%e 207 154 109 72 43--44--45--46--47--48--49--50 83 124 173

%e | | | | | | |

%e 208 155 110 73--74--75--76--77--78--79--80--81--82 123 172

%e | | | | |

%e 209 156 111-112-113-114-115-116-117-118-119-120-121-122 171

%e | | |

%e 210 157-158-159-160-161-162-163-164-165-166-167-168-169-170

%e |

%e 211-212-213-214-215-216-217-218-219-220-221-222-223-224-225

%e .

%e - _Robert G. Wilson v_, Jul 04 2014

%p A054552:=n->4*n^2-3*n+1: seq(A054552(n), n=0..50); # _Wesley Ivan Hurt_, Jul 11 2014

%t f[n_] := 4*n^2 - 3*n + 1; Array[f, 50, 0] (* _Vladimir Joseph Stephan Orlovsky_, Sep 01 2008 *)

%t LinearRecurrence[{3,-3,1},{1,2,11},50] (* _Harvey P. Dale_, Jun 01 2024 *)

%o (PARI) a(n)= 4*n^2-3*n+1 \\ _Charles R Greathouse IV_, Jan 15 2012

%o (Magma) [4*n^2-3*n+1 : n in [0..50]]; // _Wesley Ivan Hurt_, Jul 11 2014

%Y Cf. A033293, A054551, A108781.

%Y Spokes of square spiral: A054552, A054554, A054556, A053755, A054567, A054569, A033951, A016754.

%Y Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.

%Y Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.

%Y Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

%Y Cf. A003215.

%K easy,nonn

%O 0,2

%A _Enoch Haga_ and _G. L. Honaker, Jr._, Apr 09 2000