login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangular array giving number of labeled digraphs on n unisolated nodes and k=0..n*(n-1) arcs.
5

%I #16 Jan 29 2022 12:16:03

%S 0,0,2,1,0,0,12,20,15,6,1,0,0,12,140,435,768,920,792,495,220,66,12,1,

%T 0,0,0,240,2520,11604,34150,73560,123495,166860,184426,167900,125965,

%U 77520,38760,15504,4845,1140,190,20,1

%N Triangular array giving number of labeled digraphs on n unisolated nodes and k=0..n*(n-1) arcs.

%H Andrew Howroyd, <a href="/A054547/b054547.txt">Table of n, a(n) for n = 1..2680</a> (rows 1..20)

%F T(n, k) = Sum_{i=0..n} (-1)^(n-i)*binomial(n, i)*binomial(i*(i-1), k).

%e Triangle T(n,k) begins:

%e [0],

%e [0,2,1],

%e [0,0,12,20,15,6,1],

%e [0,0,12,140,435,768,920,792,495,220,66,12,1],

%e ...

%o (PARI) row(n) = {Vecrev(sum(i=0, n, (-1)^(n-i)*binomial(n,i)*(1 + 'y)^(i*(i-1))), n*(n-1)+1)}

%o { for(n=1, 6, print(row(n))) } \\ _Andrew Howroyd_, Jan 28 2022

%Y Row sums are A054545.

%Y Column sums are A121252.

%Y The unlabeled version is A350908.

%Y Cf. A054548 (graphs), A062735, A123554.

%K easy,nonn,tabf

%O 1,3

%A _Vladeta Jovovic_, Apr 09 2000