Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #41 Sep 08 2022 08:45:01
%S 1,6,17,45,118,309,809,2118,5545,14517,38006,99501,260497,681990,
%T 1785473,4674429,12237814,32039013,83879225,219598662,574916761,
%U 1505151621,3940538102,10316462685,27008849953,70710087174,185121411569,484654147533,1268841031030
%N a(n) = 3*a(n-1) - a(n-2), a(0)=1, a(1)=6.
%D A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 122-125, 194-196.
%H G. C. Greubel, <a href="/A054492/b054492.txt">Table of n, a(n) for n = 0..1000</a>
%H I. Adler, <a href="http://www.fq.math.ca/Scanned/7-2/adler.pdf">Three Diophantine equations - Part II</a>, Fib. Quart., 7 (1969), pp. 181-193.
%H E. I. Emerson, <a href="http://www.fq.math.ca/Scanned/7-3/emerson.pdf">Recurrent Sequences in the Equation DQ^2=R^2+N</a>, Fib. Quart., 7 (1969), pp. 231-242.
%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (3,-1).
%F a(n) = (6*(((3+sqrt(5))/2)^n - ((3-sqrt(5))/2)^n) - (((3+sqrt(5))/2)^(n-1) - ((3-sqrt(5))/2)^(n-1)))/sqrt(5).
%F a(n) = 2*Lucas(2*n+1) - Fibonacci(2*n+1).
%F G.f.: (1+3*x)/(1-3*x+x^2). - _Philippe Deléham_, Nov 03 2008
%F a(n) = 5*Fibonacci(2*n) + Fibonacci(2*n-1). - _Ehren Metcalfe_, Mar 26 2016
%F E.g.f.: (1/10) * exp((3-sqrt(5))*x/2) * ((5-9*sqrt(5)) + (5+9*sqrt(5)) * exp(sqrt(5)*x) ). - _G. C. Greubel_, Mar 26 2016
%t CoefficientList[Series[(1 + 3 x) / (1 - 3 x + x^2), {x, 0, 40}], x] (* _Vincenzo Librandi_, Mar 20 2015 *)
%t LinearRecurrence[{3, -1}, {1, 6}, 100] (* _G. C. Greubel_, Mar 26 2016 *)
%o (PARI) Vec((1+3*x)/(1-3*x+x^2) + O(x^30)) \\ _Michel Marcus_, Mar 20 2015
%o (Magma) I:=[1,6]; [n le 2 select I[n] else 3*Self(n-1)-Self(n-2): n in [1..30]]; // _Vincenzo Librandi_, Mar 20 2015
%Y Cf. A002878, A054486.
%K easy,nonn
%O 0,2
%A _Barry E. Williams_, May 06 2000
%E More terms from _Vincenzo Librandi_, Mar 20 2015
%E Typo in name fixed by _Karl V. Keller, Jr._, Jun 23 2015