Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #58 Jan 05 2025 19:51:36
%S 1,11,65,379,2209,12875,75041,437371,2549185,14857739,86597249,
%T 504725755,2941757281,17145817931,99933150305,582453083899,
%U 3394785353089,19786259034635,115322768854721,672150354093691,3917579355707425,22833325780150859
%N Expansion of (1+5*x)/(1-6*x+x^2).
%C A Pellian-related second-order recursive sequence.
%C Third binomial transform of 1,8,8,64,64,512. - Al Hakanson (hawkuu(AT)gmail.com), Aug 17 2009
%C Binomial transform of A164607. - _R. J. Mathar_, Oct 26 2011
%C Pisano period lengths: 1, 1, 4, 2, 6, 4, 3, 2, 12, 6, 12, 4, 14, 3, 12, 2, 8, 12, 20, 6, ... - _R. J. Mathar_, Aug 10 2012
%C From _Wolfdieter Lang_, Feb 26 2015: (Start)
%C This sequence gives all positive solutions x = x1 = a(n) of the first class of the (generalized) Pell equation x^2 - 2*y^2 = -7. For the corresponding y1 terms see 2*A038723(n). All positive solutions of the second class are given by (x2(n), y2(n)) = (A255236(n), A038725(n+1)), n >= 0. See (A254938(1), 2*A255232(1)) for the fundamental solution (1, 2) of the first class. See the Nagell reference, Theorem 111, p. 210, Theorem 110, p. 208, Theorem 108a, pp. 206-207.
%C This sequence also gives all positive solutions y = y1 of the first class of the Pell equation x^2 - 2*y^2 = 14. The corresponding solutions x1 are given in 4*A038723. This follows from the preceding comment. (End)
%C From _Wolfdieter Lang_, Mar 19 2015: (Start)
%C a(0) = -(2*A038761(0) - A038762(0)), a(n) = 2*A253811(n-1) + A101386(n-1), for n >= 1.
%C This follows from the general trivial fact that if X^2 - D*Y^2 = N (X, Y positive integers, D > 1, not a square, and N a non-vanishing integer) then x:= D*Y +/- X and y:= Y +/- X (correlated signs) satisfy x^2 - D*y^2 = -(D-1)*N. with integers x and y. Here D = 2 and N = 7. (End)
%D A. H. Beiler, Recreations in the Theory of Numbers, Dover, N. Y., 1964, pp. 122-125, 194-196.
%D T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, New York, 1964.
%H G. C. Greubel, <a href="/A054490/b054490.txt">Table of n, a(n) for n = 0..1000</a>
%H I. Adler, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/7-2/adler.pdf">Three Diophantine equations - Part II</a>, Fib. Quart., 7 (1969), pp. 181-193.
%H Seyed Hassan Alavi, Ashraf Daneshkhah, Cheryl E Praeger, <a href="https://arxiv.org/abs/2004.04535">Symmetries of biplanes</a>, arXiv:2004.04535 [math.GR], 2020. See y(n) in Lemma 7.9 p. 21.
%H E. I. Emerson, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/7-3/emerson.pdf">Recurrent Sequences in the Equation DQ^2=R^2+N</a>, Fib. Quart., 7 (1969), pp. 231-242.
%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (6,-1).
%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>
%F a(n) = 6*a(n-1) - a(n-2) for n>1, a(0)=1, a(1)=11.
%F a(n) = sqrt(8*A038723(n)^2 - 7).
%F a(n) = (11*((3+2*sqrt(2))^n - (3-2*sqrt(2))^n) - ((3+2*sqrt(2))^(n-1) - (3-2*sqrt(2))^(n-1)))/(4*sqrt(2)).
%F a(n) = 11*S(n, 6) + 5*S(n-1, 6), n >= 0, with Chebyshev's polynomials S(n, x) (A049310) evaluated at x=6: S(n, 6) = A001109(n-1). See the g.f. and the Pell equation comments above. - _Wolfdieter Lang_, Feb 26 2015
%F a(n) = 2*A253811(n-1) + A101386(n-1), for n >= 1. See the Mar 19 2015 comment above. - _Wolfdieter Lang_, Mar 19 2015
%F From _G. C. Greubel_, Jan 20 2020: (Start)
%F a(n) = Pell(2*n+1) + 3*Pell(2*n).
%F a(n) = ChebyshevU(n,3) + 5*ChebyshevU(n-1,3).
%F E.g.f.: exp(3*x)*( cosh(2*sqrt(2)*x) + 2*sqrt(2)*sinh(2*sqrt(2)*x) ). (End)
%e n = 2: sqrt(8*23^2-7) = 65.
%e 2*19 + 27 = 65. - _Wolfdieter Lang_, Mar 19 2015
%p a[0]:=1: a[1]:=11: for n from 2 to 26 do a[n]:=6*a[n-1]-a[n-2] od: seq(a[n], n=0..30); # _Zerinvary Lajos_, Jul 26 2006
%t CoefficientList[Series[(1+5x)/(1-6x+x^2), {x, 0, 30}], x] (* _Vincenzo Librandi_, Mar 20 2015 *)
%t LinearRecurrence[{6, -1}, {1, 11}, 30] (* _G. C. Greubel_, Jul 26 2018 *)
%o (Magma) I:=[1,11]; [n le 2 select I[n] else 6*Self(n-1)-Self(n-2): n in [1..30]]; // _Vincenzo Librandi_, Mar 20 2015
%o (PARI) my(x='x+O('x^30)); Vec((1+5*x)/(1-6*x+x^2)) \\ _G. C. Greubel_, Jul 26 2018
%o (Sage) [lucas_number1(2*n+1,2,-1) + 3*lucas_number1(2*n,2,-1) for n in (0..30)] # _G. C. Greubel_, Jan 20 2020
%o (GAP) a:=[1,11];; for n in [3..30] do a[n]:=6*a[n-1]-a[n-2]; od; a; # _G. C. Greubel_, Jan 20 2020
%Y Cf. A000129, A001109, A038723, A038725, A054488, A054489, A101386, A253811, A255236.
%K nonn,easy,changed
%O 0,2
%A _Barry E. Williams_, May 04 2000
%E More terms from _James A. Sellers_, May 05 2000
%E More terms from _Vincenzo Librandi_, Mar 20 2015