Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #39 Jan 05 2025 19:51:36
%S 1,7,28,85,218,499,1053,2092,3970,7272,12958,22596,38739,65535,109714,
%T 182185,300620,493635,807555,1317360,2144396,3485032,5657028,9174560,
%U 14869613,24088399,39009168,63156437,102233030,165466347,267786673
%N A second-order recursive sequence.
%D A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
%H Vincenzo Librandi, <a href="/A054469/b054469.txt">Table of n, a(n) for n = 0..1000</a>
%H A. F. Horadam, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/5-5/horadam.pdf">Special Properties of the Sequence W(n){a,b; p,q}</a>, Fib. Quart., Vol. 5, No. 5 (1967), pp. 424-434.
%H A. K. Whitford, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/15-1/whitford-a.pdf">Binet's Formula Generalized</a>, Fibonacci Quarterly, Vol. 15, No. 1, 1979, pp. 21, 24, 29.
%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (6,-14,15,-5,-4,4,-1).
%F a(n) = a(n-1) + a(n-2) + (n+2)*binomial(n+3, 3)/2.
%F a(n) = a(n-1) + a(n-2) + (n+1)*(n+2)^2*(n+3)/12.
%F a(-n) = 0.
%F a(n) = (Sum_{i=1..floor((n+2)/2)} binomial(n+5-i, n+2-2*i)) + 2*(Sum_{i=1..floor((n+1)/2)} binomial(n+5-i, n+1-2*i)).
%F G.f.: (1+x) / ((1-x)^5*(1-x-x^2)). - _Colin Barker_, Jun 11 2013
%F From _G. C. Greubel_, Oct 21 2024: (Start)
%F a(n) = Fibonacci(n+12) - Sum_{j=0..4} Fibonacci(11-2*j) * binomial(n+j, j).
%F a(n) = Fibonacci(n+12) - (1/12)*(1716 + 802*n + 173*n^2 + 20*n^3 + n^4). (End)
%t RecurrenceTable[{a[0]==1,a[1]==7,a[n]==a[n-1]+a[n-2]+(n+2) Binomial[ n+3,3]/2},a,{n,30}] (* _Harvey P. Dale_, Sep 22 2013 *)
%t CoefficientList[Series[(1+x)/((1-x)^5*(1-x-x^2)), {x, 0, 40}], x] (* _Vincenzo Librandi_, Sep 23 2013 *)
%o (PARI) a(n) = sum(i=1,(n+2)\2,binomial(n+5-i,n+2-2*i))+2*sum(i=1,(n+1)\2,binomial(n+5-i,n+1-2*i)) \\ _Jason Yuen_, Aug 13 2024
%o (Magma)
%o A054469:= func< n | Fibonacci(n+12) -(1/12)*(1716 +802*n +173*n^2 +20*n^3 +n^4) >;
%o [A054469(n): n in [0..40]]; // _G. C. Greubel_, Oct 21 2024
%o (SageMath)
%o def A054469(n): return fibonacci(n+12) - (1716 + 802*n + 173*n^2 + 20*n^3 + n^4)//12
%o [A054469(n) for n in range(41)] # _G. C. Greubel_, Oct 21 2024
%Y Cf. A000045, A001891, A001911.
%Y Right-hand column 11 of triangle A011794.
%K easy,nonn,changed
%O 0,2
%A _Barry E. Williams_, Mar 31 2000