login
Number of asymmetric n X n binary matrices under action of dihedral group of the square D_4.
5

%I #8 Oct 25 2016 21:14:31

%S 0,0,0,36,7860,4177152,8589313152,70368605798400,2305842990423490560,

%T 302231454885790246502400,158456325028519245775644917760,

%U 332306998946228931044233275859009536,2787593149816327892614636032925171439370240

%N Number of asymmetric n X n binary matrices under action of dihedral group of the square D_4.

%H Colin Barker, <a href="/A054407/b054407.txt">Table of n, a(n) for n = 0..50</a>

%F (1/8)*(2^(n^2)-2*2^((n^2+n)/2)-3*2^(n^2/2)+2*2^(n^2/4)+2*2^((n^2+2*n)/4)) if n is even and (1/8)*(2^(n^2)-4*2^((n^2+n)/2)-2^((n^2+1)/2)+4*2^((n^2+2*n+1)/4)) if n is odd. - Corrected by _Colin Barker_, Oct 25 2016

%Y Cf. A054247.

%K easy,nonn

%O 0,4

%A _Vladeta Jovovic_, May 08 2000

%E More terms from _Colin Barker_, Oct 25 2016