login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of ways of writing n as a sum of powers of 3, each power being used at most three times.
11

%I #38 Mar 01 2023 09:08:40

%S 1,1,1,2,1,1,2,1,1,3,2,2,3,1,1,2,1,1,3,2,2,3,1,1,2,1,1,4,3,3,5,2,2,4,

%T 2,2,5,3,3,4,1,1,2,1,1,3,2,2,3,1,1,2,1,1,4,3,3,5,2,2,4,2,2,5,3,3,4,1,

%U 1,2,1,1,3,2,2,3,1,1,2,1,1,5,4,4,7,3,3,6,3,3,8,5,5,7,2,2,4,2,2,6,4,4,6,2,2

%N Number of ways of writing n as a sum of powers of 3, each power being used at most three times.

%C Let M be an infinite matrix with (1, 1, 1, 1, 0, 0, 0, ...) in each column shifted down thrice from the previous column (for k>0). Then A054390 = lim_{n->infinity} M^n, the left-shifted vector considered as a sequence. - _Gary W. Adamson_, Apr 14 2010

%C Conjecture: Number of ways of partitioning n into distinct parts of A038754. - _R. J. Mathar_, Mar 01 2023

%H Alois P. Heinz, <a href="/A054390/b054390.txt">Table of n, a(n) for n = 0..10000</a>

%H Karl Dilcher, Larry Ericksen, <a href="https://www.emis.de/journals/JIS/VOL21/Dilcher/dilcher7.html">Polynomials Characterizing Hyper b-ary Representations</a>, J. Int. Seq., Vol. 21 (2018), Article 18.4.3.

%H Timothy B. Flowers, <a href="https://www.emis.de/journals/JIS/VOL20/Flowers/flowers3.html">Extending a Recent Result on Hyper m-ary Partition Sequences</a>, Journal of Integer Sequences, Vol. 20 (2017), #17.6.7.

%F a(0)=1, a(1)=1, a(2)=1 and, for n>0, a(3n)=a(n)+a(n-1), a(3n+1)=a(n), a(3n+2)=a(n).

%F G.f.: Product_{j >= 0} (1+x^(3^j)+x^(2*(3^j))+x^(3*(3^j))). - _Emeric Deutsch_, Apr 02 2006

%F G.f. A(x) satisfies: A(x) = (1 + x + x^2 + x^3) * A(x^3). - _Ilya Gutkovskiy_, Jul 09 2019

%e a(33) = 4 because we have 33 = 27+3+3 = 27+3+1+1+1 = 9+9+9+3+3 = 9+9+9+3+1+1+1.

%p a[0]:=1: a[1]:=1: a[2]:=1: for n from 1 to 35 do a[3*n]:=a[n]+a[n-1]: a[3*n+1]:=a[n]: a[3*n+2]:=a[n] od: A:=[seq(a[n],n=0..104)]; # _Emeric Deutsch_, Apr 02 2006

%p g:=product((1+x^(3^j)+x^(2*(3^j))+x^(3*(3^j))),j=0..10): gser:=series(g,x=0,125): seq(coeff(gser,x,n),n=0..104); # _Emeric Deutsch_, Apr 02 2006

%p # third Maple program:

%p b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<0, 0,

%p add(`if`(n-j*3^i<0, 0, b(n-j*3^i, i-1)), j=0..3)))

%p end:

%p a:= n-> b(n, ilog[3](n)):

%p seq(a(n), n=0..100); # _Alois P. Heinz_, Jun 21 2012

%t a[0]=1; a[1]=1; a[2]=1; For[n=1, n <= 35, n++, a[3*n] = a[n] + a[n-1]; a[3*n+1] = a[n]; a[3*n+2] = a[n]]; Table[a[n], {n, 0, 104}] (* _Jean-François Alcover_, Dec 20 2016, after _Emeric Deutsch_ *)

%Y Cf. A002487.

%K nonn,look

%O 0,4

%A _John W. Layman_, May 09 2000