login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of g.f.: (1 + x)/(1 - 10*x + x^2).
32

%I #113 May 17 2023 08:42:18

%S 1,11,109,1079,10681,105731,1046629,10360559,102558961,1015229051,

%T 10049731549,99482086439,984771132841,9748229241971,96497521286869,

%U 955226983626719,9455772314980321,93602496166176491,926569189346784589,9172089397301669399,90794324783669909401

%N Expansion of g.f.: (1 + x)/(1 - 10*x + x^2).

%C Chebyshev's even-indexed U-polynomials evaluated at sqrt(3).

%C a(n)^2 is a star number (A003154).

%C Any k in the sequence has the successor 5*k + 2*sqrt(3(2*k^2 + 1)). - _Lekraj Beedassy_, Jul 08 2002

%C {a(n)} give the values of x solving: 3*y^2 - 2*x^2 = 1. Corresponding values of y are given by A072256(n+1). x + y = A001078(n+1). - _Richard R. Forberg_, Nov 21 2013

%C The aerated sequence (b(n))n>=1 = [1, 0, 11, 0, 109, 0, 1079, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -8, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047. - _Peter Bala_, Mar 22 2015

%H G. C. Greubel, <a href="/A054320/b054320.txt">Table of n, a(n) for n = 0..1000</a>

%H K. Andersen, L. Carbone, and D. Penta, <a href="https://pdfs.semanticscholar.org/8f0c/c3e68d388185129a56ed73b5d21224659300.pdf">Kac-Moody Fibonacci sequences, hyperbolic golden ratios, and real quadratic fields</a>, Journal of Number Theory and Combinatorics, Vol 2, No. 3 pp 245-278, 2011. See Section 9.

%H Editors, L'Intermédiaire des Mathématiciens, <a href="/A072256/a072256.pdf">Query 4500: The equation x(x+1)/2 = y*(y+1)/3</a>, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (I).

%H Editors, L'Intermédiaire des Mathématiciens, <a href="/A072256/a072256_1.pdf">Query 4500: The equation x(x+1)/2 = y*(y+1)/3</a>, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (II).

%H Editors, L'Intermédiaire des Mathématiciens, <a href="/A072256/a072256_2.pdf">Query 4500: The equation x(x+1)/2 = y*(y+1)/3</a>, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (III).

%H Editors, L'Intermédiaire des Mathématiciens, <a href="/A072256/a072256_3.pdf">Query 4500: The equation x(x+1)/2 = y*(y+1)/3</a>, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (IV).

%H Alex Fink, Richard K. Guy, and Mark Krusemeyer, <a href="https://doi.org/10.11575/cdm.v3i2.61940">Partitions with parts occurring at most thrice</a>, Contrib. Discr. Math. 3 (2) (2008), pp. 76-114. See Section 13.

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/StarNumber.html">Star Number</a>

%H H. C. Williams and R. K. Guy, <a href="http://dx.doi.org/10.1142/S1793042111004587">Some fourth-order linear divisibility sequences</a>, Intl. J. Number Theory 7 (5) (2011) 1255-1277.

%H H. C. Williams and R. K. Guy, <a href="http://www.emis.de/journals/INTEGERS/papers/a17self/a17self.Abstract.html">Some Monoapparitic Fourth Order Linear Divisibility Sequences</a>, Integers, Volume 12A (2012) The John Selfridge Memorial Volume.

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (10,-1).

%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>

%F (a(n)-1)^2 + a(n)^2 + (a(n)+1)^2 = b(n)^2 + (b(n)+1)^2 = c(n), where b(n) is A031138 and c(n) is A007667.

%F a(n) = 10*a(n-1) - a(n-2).

%F a(n) = (sqrt(6) - 2)/4*(5 + 2*sqrt(6))^(n+1) - (sqrt(6) + 2)/4*(5 - 2*sqrt(6))^(n+1).

%F a(n) = U(2*(n-1), sqrt(3)) = S(n-1, 10) + S(n-2, 10) with Chebyshev's U(n, x) and S(n, x) := U(n, x/2) polynomials and S(-1, x) := 0. S(n, 10) = A004189(n+1), n >= 0.

%F 6*a(n)^2 + 3 is a square. Limit_{n->oo} a(n)/a(n-1) = 5 + 2*sqrt(6). - _Gregory V. Richardson_, Oct 13 2002

%F Let q(n, x) = Sum_{i=0..n} x^(n-i)*binomial(2*n-i, i), then (-1)^n*q(n, -12) = a(n). - _Benoit Cloitre_, Nov 10 2002

%F a(n) = L(n,-10)*(-1)^n, where L is defined as in A108299; see also A072256 for L(n,+10). - _Reinhard Zumkeller_, Jun 01 2005

%F From _Reinhard Zumkeller_, Mar 12 2008: (Start)

%F (sqrt(2) + sqrt(3))^(2*n+1) = a(n)*sqrt(2) + A138288(n)*sqrt(3);

%F a(n) = A138288(n) + A001078(n).

%F a(n) = A001079(n) + 3*A001078(n). (End)

%F a(n) = A142238(2n) = A041006(2n)/2 = A041038(2n)/4. - _M. F. Hasler_, Feb 14 2009

%F a(n) = sqrt(A006061(n)). - _Zak Seidov_, Oct 22 2012

%F a(n) = sqrt((3*A072256(n)^2 - 1)/2). - _T. D. Noe_, Oct 23 2012

%F (sqrt(3) + sqrt(2))^(2*n+1) - (sqrt(3) - sqrt(2))^(2*n+1) = a(n)*sqrt(8). - _Bruno Berselli_, Oct 29 2019

%F a(n) = A004189(n)+A004189(n+1). - _R. J. Mathar_, Oct 01 2021

%F E.g.f.: exp(5*x)*(2*cosh(2*sqrt(6)*x) + sqrt(6)*sinh(2*sqrt(6)*x))/2. - _Stefano Spezia_, May 16 2023

%e a(1)^2 = 121 is the 5th star number (A003154).

%t CoefficientList[Series[(1+x)/(1-10x+x^2), {x,0,30}], x] (* _Vincenzo Librandi_, Mar 22 2015 *)

%t a[c_, n_] := Module[{},

%t p := Length[ContinuedFraction[ Sqrt[ c]][[2]]];

%t d := Numerator[Convergents[Sqrt[c], n p]];

%t t := Table[d[[1 + i]], {i, 0, Length[d] - 1, p}];

%t Return[t];

%t ] (* Complement of A142238 *)

%t a[3/2, 20] (* _Gerry Martens_, Jun 07 2015 *)

%o (PARI) a(n)=subst(poltchebi(n+1)-poltchebi(n),x,5)/4;

%o (Magma) I:=[1,11]; [n le 2 select I[n] else 10*Self(n-1)-Self(n-2): n in [1..30]]; // _Vincenzo Librandi_, Mar 22 2015

%o (GAP) a:=[1,11];; for n in [3..30] do a[n]:=10*a[n-1]-a[n-2]; od; a; # _G. C. Greubel_, Jul 22 2019

%Y A member of the family A057078, A057077, A057079, A005408, A002878, A001834, A030221, A002315, A033890, A057080, A057081, A054320, which are the expansions of (1+x) / (1-kx+x^2) with k = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. - _Philippe Deléham_, May 04 2004

%Y Cf. A003154, A006061, A031138, A007667, A004189.

%Y Cf. A138281. Cf. A100047.

%Y Cf. A142238.

%K nonn,easy

%O 0,2

%A _Ignacio Larrosa Cañestro_, Feb 27 2000

%E Chebyshev comments from _Wolfdieter Lang_, Oct 31 2002