login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A054274 Expansion of g.f. Product_{n>=1} (1-x^n)*(1-x^(5*n))/(1-x^(3*n))^2. 1
1, -1, -1, 2, -2, -2, 6, -3, -5, 12, -8, -9, 24, -14, -18, 42, -26, -31, 76, -45, -54, 126, -76, -88, 210, -121, -144, 332, -196, -225, 526, -302, -351, 804, -464, -531, 1224, -698, -800, 1818, -1040, -1179, 2688, -1519, -1728, 3902, -2212, -2491, 5632, -3167, -3571, 8016, -4508 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
LINKS
A. J. Guttmann, Indicators of solvability for lattice models, Discrete Math., 217 (2000), 167-189.
FORMULA
Euler transform of period 15 sequence [ -1, -1, 1, -1, -2, 1, -1, -1, 1, -2, -1, 1, -1, -1, 0, ...]. - Michael Somos, Sep 21 2005
Expansion of eta(q)*eta(q^5)/eta(q^3)^2 in powers of q. - Michael Somos, Sep 21 2005
EXAMPLE
G.f. = 1 - q - q^2 + 2*q^3 - 2*q^4 - 2*q^5 + 6*q^6 - 3*q^7 - 5*q^8 + 12*q^9 + ...
MATHEMATICA
QP = QPochhammer; s = QP[q]*(QP[q^5]/QP[q^3]^2) + O[q]^60; CoefficientList[ s, q] (* Jean-François Alcover, Nov 30 2015, adapted from PARI *)
PROG
(PARI) {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x+A)* eta(x^5+A)/eta(x^3+A)^2, n))} /* Michael Somos, Sep 21 2005 */
(Magma) m:=60; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1-x^j)*(1-x^(5*j))/(1-x^(3*j))^2: j in [1..m+2]]) )); // G. C. Greubel, Jul 31 2019
CROSSREFS
Sequence in context: A081668 A126615 A158524 * A053695 A210550 A208659
KEYWORD
sign
AUTHOR
N. J. A. Sloane, May 08 2000
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 06:57 EST 2023. Contains 367557 sequences. (Running on oeis4.)