login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Consider all integer triples (i,j,k), j,k>0, with i^3=j^3+binomial(k+2,3), ordered by increasing i; sequence gives k values.
3

%I #21 Jan 29 2020 04:41:06

%S 6,19,132,182,217,757,2377,2077,2833,4374,2408,4864,4912,6097,7295,

%T 3324,8341,13357,17522,20006,25939,20406,24492,68984,75732,69151,

%U 79000,69361,97598,99064,126014,126873,154622,174278,180514,136431,117151,198310,238630,282961,297815

%N Consider all integer triples (i,j,k), j,k>0, with i^3=j^3+binomial(k+2,3), ordered by increasing i; sequence gives k values.

%C i values are A054234 and j values are A054235.

%H Jon E. Schoenfield, <a href="/A054236/b054236.txt">Table of n, a(n) for n=1..41</a>

%e 4^3 = 64 = 2^3 + binomial(6+2,3);

%e 11^3 = 1331 = 1^3 + binomial(19+2,3).

%t (* This is just a re-computation of A054236, given A054234 *)

%t A054234 = Cases[Import["https://oeis.org/A054234/b054234.txt", "Table"], {_, _}][[All, 2]];

%t A054236 = Reap[ Do[ Do[ r = Reduce[ i^3 == j^3 + Binomial[k+2, 3], k, Integers]; If[r =!= False, ijk = {i, j, k} /. ToRules[r]; Print[ijk]; Sow[ijk[[3]]]; Break[]], {j, 1, i-2}], {i, A054234}]][[2, 1]] (* _Jean-François Alcover_, Jan 2013, updated Jan 24 2020 *)

%Y Cf. A054234, A054235.

%K nice,nonn

%O 1,1

%A Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Feb 07 2000

%E More terms from _Jon E. Schoenfield_, Jan 19 2009