login
A054218
Palindromic primes of the form 'primemirp' resulting from A054217.
3
2, 3, 5, 7, 131, 313, 373, 797, 11311, 17971, 18181, 19991, 35353, 72727, 78787, 90709, 93739, 96769, 98389, 1153511, 1193911, 1201021, 1409041, 1583851, 1597951, 1657561, 1831381, 1879781, 3083803, 3089803, 3319133, 3343433, 3391933, 3541453, 3643463
OFFSET
1,1
COMMENTS
Original idea from G. L. Honaker, Jr.
LINKS
EXAMPLE
Prime 113 has emirp 311 and 11311 is a palindromic prime.
PROG
(Python)
from sympy import isprime
for i in range(2, 10**7):
if isprime(i):
emirp = int(str(i)[-1::-1])
if isprime(emirp):
primemirp = int(str(i)+str(emirp)[1:])
if isprime(primemirp):
print(primemirp)
# Peter Rowlett, Nov 16 2023
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Patrick De Geest, Feb 15 2000
EXTENSIONS
a(33)-a(35) from Peter Rowlett, Nov 16 2023
STATUS
approved