|
|
A054036
|
|
Numbers n such that n^2 contains exactly 8 different digits.
|
|
10
|
|
|
3206, 3267, 3268, 3292, 3674, 3678, 3698, 3723, 3734, 4047, 4097, 4157, 4175, 4455, 4537, 4554, 4616, 4634, 4663, 4804, 4814, 4896, 4913, 4967, 4987, 5376, 5529, 5699, 5742, 5853, 5899, 5904, 5905, 5968, 6043, 6071, 6095, 6098, 6127, 6176, 6181, 6199
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
EXAMPLE
|
3206 is in the sequence because 3206^2 = 10278436 and 10278436 contains exactly eight different digits: 0, 1, 2, 3, 4, 6, 7 and 8.
|
|
MAPLE
|
f := []; for i from 0 to 200 do if nops({op(convert(i^2, base, 10))})=8 then f := [op(f), i] fi; od; f;
|
|
MATHEMATICA
|
Select[Range[7000], Count[DigitCount[#^2], 0]==2&] (* Harvey P. Dale, Aug 10 2017 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
Asher Auel (asher.auel(AT)reed.edu), Feb 28 2000
|
|
STATUS
|
approved
|
|
|
|