login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of the divisors of n reduced modulo n.
44

%I #77 Oct 27 2023 22:00:46

%S 0,1,1,3,1,0,1,7,4,8,1,4,1,10,9,15,1,3,1,2,11,14,1,12,6,16,13,0,1,12,

%T 1,31,15,20,13,19,1,22,17,10,1,12,1,40,33,26,1,28,8,43,21,46,1,12,17,

%U 8,23,32,1,48,1,34,41,63,19,12,1,58,27,4,1,51,1,40,49,64,19,12,1,26,40

%N Sum of the divisors of n reduced modulo n.

%C If a(n) = 0, then n is a multiply-perfect number (A007691). - _Alonso del Arte_, Mar 30 2014

%H Antti Karttunen, <a href="/A054024/b054024.txt">Table of n, a(n) for n = 1..65537</a> (first 1000 terms from T. D. Noe, terms 1001..20000 from Alois P. Heinz).

%H Walter Nissen, <a href="http://upforthecount.com/math/abundance.html">Abundancy : Some Resources</a>.

%F a(n) = sigma(n) mod n.

%F a(p) = 1 for p prime.

%e a(12) = 4 because sigma(12) = 28 and 28 == 4 (mod 12).

%e a(13) = 1 because 13 is prime.

%e a(14) = 10 because sigma(14) = 24 and 24 == 10 (mod 14).

%p with(numtheory): seq(sigma(i) mod i, i=1..100);

%t Table[Mod[DivisorSigma[1, n], n], {n, 80}] (* _Alonso del Arte_, Mar 30 2014 *)

%o (Haskell)

%o a054024 n = mod (a000203 n) n -- _Reinhard Zumkeller_, Mar 23 2013

%o (PARI) a(n)=sigma(n)%n \\ _Charles R Greathouse IV_, Nov 04 2014

%Y Cf. A000203 (sigma), A005114 (untouchable numbers), A007691 (positions of 0's), A045768, A045769, A088834, A045770, A076496, A159907.

%K nonn,easy

%O 1,4

%A _Asher Auel_, Jan 19 2000