login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that k^2 contains only digits {2,3,5}.
2

%I #25 Feb 29 2024 09:16:50

%S 5,15,235,485,1885,5765,15885,50235,57665,72335,1798765,15249765,

%T 187703365,179876492415,159789024443333515,576387476638096486959455635

%N Numbers k such that k^2 contains only digits {2,3,5}.

%H Michael S. Branicky, <a href="/A053918/a053918.txt">Python program</a>

%H Patrick De Geest, <a href="http://www.worldofnumbers.com/threedigits.htm">Squares containing at most three distinct digits, Index entries for related sequences</a>

%H Author?, <a href="http://web.archive.org/web/20080708203024/http://blue.kakiko.com/mmrmmr/htm/eqtn06.html">Source</a>(<a href="http://web.archive.org/web/20060426155831/http://blue.kakiko.com/mmrmmr/txt/eqtn06.txt">txt</a>)

%H H. Mishima <a href="http://www.asahi-net.or.jp/~KC2H-MSM/mathland/math02/math0210.htm#235">Squares consisted of 3 different digits</a>

%o (Python) # see link for faster version

%o def aupto(limit):

%o alst = []

%o for k in range(1, limit+1):

%o if set(str(k*k)) <= set("235"): alst.append(k)

%o return alst

%o print(aupto(2*10**6)) # _Michael S. Branicky_, May 15 2021

%Y Cf. A053919.

%K nonn,base,more

%O 1,1

%A _Patrick De Geest_, Mar 15 2000

%E More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 03 2005

%E One more term from Mishima's webpage added by _Max Alekseyev_, Jun 17 2011

%E a(16) from _Zhao Hui Du_, Feb 29 2024