login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (sum of digits of n written in base 4) modulo 4.
9

%I #52 Aug 09 2024 05:16:34

%S 0,1,2,3,1,2,3,0,2,3,0,1,3,0,1,2,1,2,3,0,2,3,0,1,3,0,1,2,0,1,2,3,2,3,

%T 0,1,3,0,1,2,0,1,2,3,1,2,3,0,3,0,1,2,0,1,2,3,1,2,3,0,2,3,0,1,1,2,3,0,

%U 2,3,0,1,3,0,1,2,0,1,2,3,2,3,0,1,3,0,1,2,0,1,2,3,1,2,3,0,3,0,1,2,0,1,2,3,1

%N a(n) = (sum of digits of n written in base 4) modulo 4.

%C a(n) is the third row of the array in A141803. - _Andrey Zabolotskiy_, May 16 2016

%C This is the fixed point of the morphism 0->0123, 1->1230, 2->2301, 3->3012 starting with 0. Let t be the (nonperiodic) sequence of positions of 0, and likewise, u for 1, v for 2, and w for 3; then t(n)/n -> 4, u(n)/n -> 4, v(n)/n -> 4, w(n)/n -> 4, and t(n) + u(n) + v(n) + w(n) = 16*n - 6 for n >= 1. - _Clark Kimberling_, May 31 2017

%H Robert Israel, <a href="/A053839/b053839.txt">Table of n, a(n) for n = 0..10000</a>

%H Glen Joyce C. Dulatre, Jamilah V. Alarcon, Vhenedict M. Florida and Daisy Ann A. Disu, <a href="http://docplayer.net/87034980-Vol-15-no-2-april-2017-dmmmsu-cas-science-monitor.html">On Fractal Sequences</a>, DMMMSU-CAS Science Monitor (2016-2017) Vol. 15 No. 2, 109-113.

%H Robert Walker, <a href="http://robertinventor.com/ftswiki/Self_Similar_Sloth_Canon_Number_Sequences">Self Similar Sloth Canon Number Sequences</a>

%H <a href="/index/Fi#FIXEDPOINTS">Index entries for sequences that are fixed points of mappings</a>

%F a(n) = A010873(A053737(n)). - _Andrey Zabolotskiy_, May 18 2016

%F G.f. G(x) satisfies x^81*G(x) - (x^72+x^75+x^78+x^81)*G(x^4) + (x^48+x^60+x^63-x^64+x^72+x^75-x^76+x^78-x^79-x^88-x^91-x^94)*G(x^16) + (-1+x^16-x^48-x^60-x^63+2*x^64+x^76+x^79-x^80+x^112+x^124+x^127-x^128-x^140-x^143)*G(x^64) + (1-x^16-x^64+x^80-x^256+x^272+x^320-x^336)*G(x^256) = 0. - _Robert Israel_, May 18 2016

%e First three iterations of the morphism 0->0123, 1->1230, 2->2301, 3->3012:

%e 0123

%e 0123123023013012

%e 0123123023013012123023013012012323013012012312303012012312302301

%p seq(convert(convert(n,base,4),`+`) mod 4, n=0..100); # _Robert Israel_, May 18 2016

%t Mod[Total@ IntegerDigits[#, 4], 4] & /@ Range[0, 120] (* _Michael De Vlieger_, May 17 2016 *)

%t s = Nest[Flatten[# /. {0 -> {0, 1, 2, 3}, 1 -> {1, 2, 3, 0}, 2 -> {2, 3, 0, 1}, 3 -> {3, 0, 1, 2}}] &, {0}, 9]; (* - _Clark Kimberling_, May 31 2017 *)

%o (PARI) a(n) = vecsum(digits(n,4)) % 4; \\ _Michel Marcus_, May 16 2016

%o (PARI) a(n) = sumdigits(n, 4) % 4; \\ _Michel Marcus_, Jul 04 2018

%Y Cf. A010060, A053837-A053844, A141803, A287552, A287553, A287554, A287555.

%Y Cf. A010873, A053737.

%K base,nonn

%O 0,3

%A _Henry Bottomley_, Mar 28 2000