login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (sum of digits of n written in base 3) modulo 3.
18

%I #60 Jul 04 2018 10:43:19

%S 0,1,2,1,2,0,2,0,1,1,2,0,2,0,1,0,1,2,2,0,1,0,1,2,1,2,0,1,2,0,2,0,1,0,

%T 1,2,2,0,1,0,1,2,1,2,0,0,1,2,1,2,0,2,0,1,2,0,1,0,1,2,1,2,0,0,1,2,1,2,

%U 0,2,0,1,1,2,0,2,0,1,0,1,2,1,2,0,2,0,1,0,1,2,2,0,1,0,1,2,1,2,0,0,1,2,1,2,0

%N a(n) = (sum of digits of n written in base 3) modulo 3.

%C Start with 0, repeatedly apply the morphism 0->012, 1->120, 2->201. This is a ternary version of the Thue-Morse sequence A010060. See Brlek (1989). - _N. J. A. Sloane_, Jul 10 2012

%C Equals A004128 mod 3. [_Gary W. Adamson_, Aug 24 2008]

%C A090193 is generated by the same mapping starting with 1. A090239 is generated by the same mapping starting with 2. - _Andrey Zabolotskiy_, May 04 2016.

%H Vincenzo Librandi, <a href="/A053838/b053838.txt">Table of n, a(n) for n = 0..2000</a>

%H S. Brlek, <a href="http://dx.doi.org/10.1016/0166-218X(92)90274-E">Enumeration of factors in the Thue-Morse word</a>, Discrete Applied Math. 24 (1989), 83-96.

%H Arthur Dolgopolov, <a href="https://arthurdolgopolov.net/papers/TM.pdf">Equitable Sequencing and Allocation Under Uncertainty</a>, Preprint, 2016.

%H Glen Joyce C. Dulatre, Jamilah V. Alarcon, Vhenedict M. Florida, Daisy Ann A. Disu, <a href="http://www.dmmmsu-sluc.com/wp-content/uploads/2018/03/CAS-Monitor-2016-2017-1.pdf">On Fractal Sequences</a>, DMMMSU-CAS Science Monitor (2016-2017) Vol. 15 No. 2, 109-113.

%H Michael Gilleland, <a href="/selfsimilar.html">Some Self-Similar Integer Sequences</a>

%H Michel Rigo, <a href="http://arxiv.org/abs/1602.03364">Relations on words</a>, arXiv preprint arXiv:1602.03364 [cs.FL], 2016. See Example 17.

%H Robert Walker, <a href="http://robertinventor.com/ftswiki/Self_Similar_Sloth_Canon_Number_Sequences">Self Similar Sloth Canon Number Sequences</a>

%H <a href="/index/Fi#FIXEDPOINTS">Index entries for sequences that are fixed points of mappings</a>

%F a(n) = A010872(A053735(n)) =(n+a(floor[n/3])) mod 3. So one can construct sequence by starting with 0 and mapping 0->012, 1->120 and 2->201 (e.g. 0, 012, 012120201, 012120201120201012201012120, ...) and looking at n-th digit of a term with sufficient digits.

%p A053838 := proc(n)

%p add(d,d=convert(n,base,3)) ;

%p modp(%,3) ;

%p end proc:

%p seq(A053838(n),n=0..100) ; # _R. J. Mathar_, Nov 04 2017

%t Nest[ Flatten[ # /. {0 -> {0, 1, 2}, 1 -> {1, 2, 0}, 2 -> {2, 0, 1}}] &, {0}, 7] (* _Robert G. Wilson v_, Mar 08 2005 *)

%o (PARI) a(n) = vecsum(digits(n, 3)) % 3; \\ _Michel Marcus_, May 04 2016

%Y Cf. A004128, A010060, A053837, A053839-A053844.

%Y Equals A026600(n+1) - 1.

%K base,nonn

%O 0,3

%A _Henry Bottomley_, Mar 28 2000