Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #76 Aug 13 2024 05:05:16
%S 2,2,2,3,2,2,3,2,5,2,3,2,3,2,5,2,2,2,2,7,5,3,2,3,5,2,3,2,2,3,3,2,3,2,
%T 2,3,2,2,5,2,2,2,7,5,2,3,2,3,2,2,3,7,7,2,3,5,2,3,2,3,2,2,2,11,5,2,2,5,
%U 2,2,3,7,3,2,2,5,2,2,3,7,2,2,7,5,3,2,3,5,2,3,2,13,3,2,2,5,2,3,2,2,2,2,2
%N Smallest positive quadratic nonresidue modulo p, where p is the n-th prime.
%C Assuming the Generalized Riemann Hypothesis, Montgomery proved a(n) << (log p(n))^2, meaning that there is a constant c such that |a(n)| <= c*(log p(n))^2. - _Jonathan Vos Post_, Jan 06 2007
%C a(n) < 1 + sqrt(p), where p is the n-th prime (Theorem 3.9 in Niven, Zuckerman, and Montgomery). - _Jonathan Sondow_, May 13 2010
%C Treviño proves that a(n) < 1.1 p^(1/4) log p for n > 2 where p is the n-th prime. - _Charles R Greathouse IV_, Dec 06 2012
%C a(n) is always a prime, because if x*y is a nonresidue, then x or y must also be a nonresidue. - _Jonathan Sondow_, May 02 2013
%C a(n) is the smallest prime q such that the congruence x^2 == q (mod p) has no solution 0 < x < p, where p = prime(n). For n > 1, a(n) is the smallest base b such that b^((p-1)/2) == -1 (mod p), where odd p = prime(n). - _Thomas Ordowski_, Apr 24 2019
%D Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 94-98.
%D Hugh L. Montgomery, Topics in Multiplicative Number Theory, 3rd ed., Lecture Notes in Mathematics, Vol. 227 (1971), MR 49:2616.
%D Ivan Niven, Herbert S. Zuckerman, and Hugh L. Montgomery, An Introduction to the Theory Of Numbers, Fifth Edition, John Wiley and Sons, Inc., NY 1991, p. 147.
%D Paulo Ribenboim, The New Book of Prime Number Records, 3rd ed., Springer-Verlag 1996; Math. Rev. 96k:11112.
%H T. D. Noe, <a href="/A053760/b053760.txt">Table of n, a(n) for n = 1..10000</a>
%H Robert Baillie and Samuel S. Wagstaff, <a href="https://doi.org/10.1090/S0025-5718-1980-0583518-6">Lucas pseudoprimes</a>, Mathematics of Computation, Vol. 35, No. 152 (1980), pp. 1391-1417, Math. Rev. 81j:10005, <a href="http://mpqs.free.fr/LucasPseudoprimes.pdf">alternative link</a>.
%H Paul Erdős, <a href="http://www.renyi.hu/~p_erdos/1961-23.pdf">Remarks on number theory. I.</a>, Mat. Lapok, Vol. 12 (1961), pp. 10-17; Math. Rev. 26 #2410.
%H Steven R. Finch, <a href="http://www.people.fas.harvard.edu/~sfinch/constant/hdmrd/jacobi.html">Quadratic Residues</a> [Broken link]
%H Steven R. Finch, <a href="http://web.archive.org/web/20010208112444/http://www.mathsoft.com/asolve/constant/hdmrd/jacobi.html">Quadratic Residues</a> [From the Wayback machine]
%H Keith Matthews, <a href="http://www.numbertheory.org/php/leastqnr.html">Finding n(p), the least quadratic non-residue (mod p)</a>
%H Enrique Treviño, <a href="https://doi.org/10.1016/j.jnt.2014.10.019">The least k-th power non-residue</a>, Journal of Number Theory, Vol. 149 (2015),pp. 201-224, <a href="http://campus.lakeforest.edu/trevino/LeastNonResidue.pdf">alternative link</a>.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/QuadraticNonresidue.html">Quadratic Nonresidue</a>.
%F a(n) = A020649(prime(n)) for n > 1. - _Thomas Ordowski_, Apr 24 2019
%F Asymptotic mean: lim_{n->oo} (1/n) * Sum_{k=1..n} a(k) = A098990 (Erdős, 1961). - _Amiram Eldar_, Oct 29 2020
%e The 5th prime is 11, and the positive quadratic residues mod 11 are 1^2 = 1, 2^2 = 4, 3^2 = 9, 4^2 = 5 and 5^2 = 3. Since 2 is missing, a(5) = 2.
%e The only positive quadratic redidue mod 2 is 1, so a(1)=2.
%t Table[ p = Prime[n]; First[ Select[ Range[p], JacobiSymbol[#, p] != 1 &]], {n, 1, 100}] (* _Jonathan Sondow_, Mar 03 2013 *)
%o (PARI) residue(n,m)={local(r);r=0;for(i=0,floor(m/2),if(i^2%m==n,r=1));r}
%o A053760(n)={local(r,m);r=0;m=0;while(r==0,m=m+1;if(!residue(m,prime(n)),r=1));m} \\ Michael B. Porter, May 02 2010
%o (PARI) qnr(p)=my(m);while(1,if(!issquare(Mod(m++,p)),return(m)))
%o a(n)=if(n>1,qnr(prime(n)),2) \\ _Charles R Greathouse IV_, Feb 27 2013
%Y Cf. A000229, A020649, A098990.
%K nonn
%O 1,1
%A _Steven Finch_, Apr 05 2000
%E More terms from _James A. Sellers_, Apr 08 2000