login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Let Oc(n) = A005900(n) = n-th octahedral number. Consider all integer triples (i,j,k), j >= k > 0, with Oc(i) = Oc(j)+Oc(k), ordered by increasing i; sequence gives j values.
5

%I #9 Dec 07 2012 05:03:30

%S 6,40,454,2600,2586,20175,48103,93097,105805,265195,755100,803007,

%T 1211000,1111974,1493421,1499160,2622000,4309280,5127195,5574139

%N Let Oc(n) = A005900(n) = n-th octahedral number. Consider all integer triples (i,j,k), j >= k > 0, with Oc(i) = Oc(j)+Oc(k), ordered by increasing i; sequence gives j values.

%e Oc(7) = 231 = Oc(6) + Oc(5); Oc(41) = 45961 = Oc(40) + Oc(17); Oc(465) = 67029905 = Oc(454) + Oc(191)

%t (* This is just a check of j-values, given i-values *) A053676 = {7, 41, 465, 2732, 3005, 20648, 48125, 94396, 129299, 282931, 789281, 835050, 1241217, 1292143, 1521647, 1603655, 2756953, 4847702, 5128447, 6242598}; r[i_] := Reduce[0 < k <= j && 2*i^3 + i == 2*j^3 + j + 2*k^3 + k, {j, k}, Integers]; A053677 = Table[res = {i, j, k} /. ToRules[r[i]]; Print[res]; res, {i, A053676}][[All, 2]] (* _Jean-François Alcover_, Dec 07 2012 *)

%Y i values are A053676 and k values are A053678.

%K nice,nonn

%O 1,1

%A Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Feb 16 2000

%E More terms from Larry Reeves (larryr(AT)acm.org), May 07 2001

%E a(13)-a(16) from _Donovan Johnson_, Jun 21 2010

%E a(17)-a(20) from _Donovan Johnson_, Sep 29 2010