Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #60 Jan 05 2025 00:44:55
%S 1,0,1,1,3,11,53,103,2119,16687,16481,1468457,16019531,63633137,
%T 2467007773,34361893981,15549624751,8178130767479,138547156531409,
%U 92079694567171,4282366656425369,72289643288657479,6563440628747948887,39299278806015611311
%N Numerator of Sum_{k=0..n} (-1)^k/k!.
%C Numerator of probability of a derangement of n things (A000166(n)/n! or !n/n!).
%C Also denominators of successive convergents to e using continued fraction 2 + 1/(1 + 1/(2 + 2/(3 + 3/(4 + 4/(5 + 5/(6 + 6/(7 + 7/(8 + ...)))))))).
%D L. Lorentzen and H. Waadeland, Continued Fractions with Applications, North-Holland 1992, p. 562.
%D E. Maor, e: The Story of a Number, Princeton Univ. Press 1994, pp. 151 and 157.
%H G. C. Greubel, <a href="/A053557/b053557.txt">Table of n, a(n) for n = 0..450</a> (terms 0..100 from T. D. Noe)
%H Leonhardo Eulero, <a href="http://gallica.bnf.fr/ark:/12148/bpt6k69587">Introductio in analysin infinitorum. Tomus primus</a>, Lausanne, 1748.
%H L. Euler, Introduction à l'analyse infinitésimale, <a href="http://gallica.bnf.fr/ark:/12148/bpt6k3884z">Tome premier</a>, <a href="http://gallica.bnf.fr/ark:/12148/bpt6k38858">Tome second</a>, trad. du latin en français par J. B. Labey, Paris, 1796-1797.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ContinuedFractionConstants.html">Continued Fraction Constants</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GeneralizedContinuedFraction.html">Generalized Continued Fraction</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Subfactorial.html">Subfactorial</a>
%F Let exp(-x)/(1-x) = Sum_{n >= 0} (a_n/b_n)*x^n. Then sequence a_n is A053557. - _Aleksandar Petojevic_, Apr 14 2004
%e 1, 0, 1/2, 1/3, 3/8, 11/30, 53/144, 103/280, 2119/5760, ...
%t Numerator[CoefficientList[Series[Exp[-x]/(1-x), {x, 0, 30}], x]] (* _Jean-François Alcover_, Nov 18 2011 *)
%t Table[Numerator[Sum[(-1)^k/k!,{k,0,n}]],{n,0,30}] (* _Harvey P. Dale_, Dec 02 2011 *)
%t Join[{1, 0}, Numerator[RecurrenceTable[{a[n]==a[n-1]+a[n-2]/(n-2), a[1] ==0, a[2]==1}, a, {n,2,30}]]] (* _Terry D. Grant_, May 07 2017; corrected by _G. C. Greubel_, May 16 2019 *)
%o (PARI) for(n=0, 30, print1(numerator(sum(k=0,n, (-1)^k/k!)), ", ")) \\ _G. C. Greubel_, Nov 05 2017
%o (Magma) [Numerator( (&+[(-1)^k/Factorial(k): k in [0..n]]) ): n in [0..30]]; // _G. C. Greubel_, May 16 2019
%o (Sage) [numerator(sum((-1)^k/factorial(k) for k in (0..n))) for n in (0..30)] # _G. C. Greubel_, May 16 2019
%o (Python)
%o from fractions import Fraction
%o from math import factorial
%o def A053557(n): return sum(Fraction(-1 if k&1 else 1,factorial(k)) for k in range(n+1)).numerator # _Chai Wah Wu_, Jul 31 2023
%Y Cf. A000166/A000142, A053556 (denominators), A053518-A053520. See also A103816.
%Y a(n) = (N(n, n) of A103361), A053557/A053556 = A000166/n! = (N(n, n) of A103361)/(D(n, n) of A103360), Cf. A053518-A053520.
%K nonn,frac,nice,easy,changed
%O 0,5
%A _N. J. A. Sloane_, Jan 17 2000
%E More terms from _Vladeta Jovovic_, Mar 31 2000