login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of bipartite graphs with 5 edges on nodes {1..n}.
2

%I #21 Sep 08 2022 08:45:00

%S 0,0,0,0,0,60,1701,14952,81228,331884,1116675,3256407,8500734,

%T 20306286,45093048,94189095,186736368,353904096,644842674,1134910242,

%U 1936817820,3215467584,5207403663,8245956642,12793342716,19481177100,29161079805,42967291185,62393475690

%N Number of bipartite graphs with 5 edges on nodes {1..n}.

%D R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.5.

%H T. D. Noe, <a href="/A053528/b053528.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).

%F a(n) = (n-4)*(n-3)*(n-2)*(n-1)*n*(n^5 + 5*n^4 + 5*n^3 - 85*n^2 - 374*n - 960)/3840.

%F G.f.: x^5*(60+1041*x-459*x^2+411*x^3-129*x^4+21*x^5)/(1-x)^11. - _Colin Barker_, May 08 2012

%F E.g.f.: x^5*(1920 + 7152*x + 3280*x^2 + 560*x^3 + 40*x^4 + x^5)*exp(x)/3840. - _G. C. Greubel_, May 15 2019

%t Table[Binomial[n,5]*(n^5 +5*n^4 +5*n^3 -85*n^2 -374*n -960)/32, {n,0,30}] (* _G. C. Greubel_, May 15 2019 *)

%o (PARI) {a(n) = binomial(n,5)*(n^5 +5*n^4 +5*n^3 -85*n^2 -374*n -960)/32}; \\ _G. C. Greubel_, May 15 2019

%o (Magma) [Binomial(n,5)*(n^5 +5*n^4 +5*n^3 -85*n^2 -374*n -960)/32: n in [0..30]]; // _G. C. Greubel_, May 15 2019

%o (Sage) [binomial(n,5)*(n^5 +5*n^4 +5*n^3 -85*n^2 -374*n -960)/32 for n in (0..30)] # _G. C. Greubel_, May 15 2019

%o (GAP) List([0..30], n-> Binomial(n,5)*(n^5 +5*n^4 +5*n^3 -85*n^2 -374*n -960)/32) # _G. C. Greubel_, May 15 2019

%Y Column k=5 of A117279.

%Y Cf. A000217 (1 edge), A050534 (2 edges), A053526 (3 edges), A053527 (4 edges).

%K nonn,easy

%O 0,6

%A _N. J. A. Sloane_, Jan 16 2000