Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Sep 08 2022 08:45:00
%S 1,1,1,3,9,21,81,351,1233,46089,434241,2359611,27387801,264333213,
%T 1722161169,16514298711,163094452641,1216239520401,50883607918593,
%U 866931703203699,8473720481213481,166915156382509221,2699805625227141201,28818706120636531023,439756550972215638129,6766483260087819272601,77096822666547068590401,3568144263578808757678251
%N Number of degree-n permutations of order dividing 9.
%C Differs from A218003 first at n=27. - _Alois P. Heinz_, Jan 25 2014
%D R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.
%H Alois P. Heinz, <a href="/A053499/b053499.txt">Table of n, a(n) for n = 0..200</a>
%H L. Moser and M. Wyman, <a href="http://dx.doi.org/10.4153/CJM-1955-020-0">On solutions of x^d = 1 in symmetric groups</a>, Canad. J. Math., 7 (1955), 159-168.
%F E.g.f.: exp(x + x^3/3 + x^9/9).
%p a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
%p add(mul(n-i, i=1..j-1)*a(n-j), j=[1, 3, 9])))
%p end:
%p seq(a(n), n=0..25); # _Alois P. Heinz_, Feb 14 2013
%t CoefficientList[Series[Exp[x+x^3/3+x^9/9], {x, 0, 30}], x]*Range[0, 30]! (* _Jean-François Alcover_, Mar 24 2014 *)
%o (PARI) my(x='x+O('x^30)); Vec(serlaplace( exp(x + x^3/3 + x^9/9) )) \\ _G. C. Greubel_, May 15 2019
%o (Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^3/3 + x^9/9) )); [Factorial(n-1)*b[n]: n in [1..m]]; // _G. C. Greubel_, May 15 2019
%o (Sage) m = 30; T = taylor(exp(x + x^3/3 + x^9/9), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # _G. C. Greubel_, May 15 2019
%Y Cf. A000085, A001470, A001472, A053495-A053505, A005388, A261429.
%Y Column k=9 of A008307.
%K nonn
%O 0,4
%A _N. J. A. Sloane_, Jan 15 2000