login
A053432
Numbers with digits in alphabetical order (in English).
19
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17, 20, 22, 30, 32, 33, 40, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 62, 63, 66, 70, 72, 73, 76, 77, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 96, 97, 99, 100
OFFSET
1,3
COMMENTS
a(142447) = A053433(1023) = 8549176320 is the greatest term not containing any repeating digits. - Reinhard Zumkeller, Oct 05 2014
LINKS
Eric Weisstein's World of Mathematics, Word Sequence
PROG
(Haskell)
import Data.IntSet (fromList, deleteFindMin, union)
a053432 n = a053432_list !! (n-1)
a053432_list = 0 : f (fromList [1..9]) where
f s = x : f (s' `union`
fromList (map (+ 10 * x) $ dropWhile (/= mod x 10) digs))
where (x, s') = deleteFindMin s
digs = [8, 5, 4, 9, 1, 7, 6, 3, 2, 0]
-- Reinhard Zumkeller, Oct 05 2014.
(Python)
from itertools import count, islice, combinations_with_replacement as cwr
def agen(): # generator of terms
for d in count(1):
out = sorted(int("".join(t)) for t in cwr("8549176320", d))
yield from out[1-int(d==1):] # remove extra 0's
print(list(islice(agen(), 65))) # Michael S. Branicky, Aug 17 2022
CROSSREFS
Cf. A247750 (Czech), A247751 (Danish), A247752 (Dutch), A247753 (Finnish), A247754 (French), A247755 (German), A247756 (Hungarian), A247757 (Italian), A247758 (Latin), A247759 (Norwegian), A247760 (Polish), A247757 (Portuguese), A247761 (Russian), A247762 (Slovak), A161390 (Spanish), A247759 (Swedish), A247764 (Turkish).
Sequence in context: A023782 A114522 A283657 * A349999 A261888 A154125
KEYWORD
nonn,base,word,easy
AUTHOR
G. L. Honaker, Jr., Jan 10 2000
STATUS
approved