login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 3-multigraphs on n nodes.
7

%I #15 Jul 10 2024 02:59:16

%S 1,4,20,276,10688,1601952,892341888,1799786093088,13042490003160192,

%T 341378170022783017472,32526326484972756063585792,

%U 11367103329997359707194173746176,14669222110846093400698801891700529152

%N Number of 3-multigraphs on n nodes.

%D F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY,1973.

%H Andrew Howroyd, <a href="/A053400/b053400.txt">Table of n, a(n) for n = 1..50</a>

%H Harald Fripertinger, <a href="http://www.mathe2.uni-bayreuth.de/frib/html/book/hyl00_42.html">The cycle type of the induced action on 2-subsets</a>

%H Vladeta Jovovic, <a href="/A063843/a063843.rtf">Formulae for the number T(n,k) of n-multigraphs on k nodes</a>

%o (Python)

%o from itertools import combinations

%o from math import prod, gcd, factorial

%o from fractions import Fraction

%o from sympy.utilities.iterables import partitions

%o def A053400(n): return int(sum(Fraction(1<<(sum(p[r]*p[s]*gcd(r,s) for r,s in combinations(p.keys(),2))+sum((q>>1)*r+(q*r*(r-1)>>1) for q, r in p.items())<<1),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))) # _Chai Wah Wu_, Jul 09 2024

%Y Column k=3 of A063841.

%Y Cf. A004102.

%K easy,nonn,nice

%O 1,2

%A _Vladeta Jovovic_, Jan 06 2000