login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that 297*2^k + 1 is prime.
0

%I #36 Dec 20 2024 10:49:11

%S 3,6,14,15,20,27,38,123,276,327,380,411,546,819,1155,1274,1800,1875,

%T 3135,3411,7514,9446,12615,23400,23564,99344,108258,148988,153818,

%U 157623,306596,622800,2660048,3087543,3765140,4432947

%N Numbers k such that 297*2^k + 1 is prime.

%H Ray Ballinger and Wilfrid Keller, <a href="http://www.prothsearch.com/riesel1.html">List of primes k.2^n + 1 for k < 300</a>

%H Wilfrid Keller, <a href="http://www.prothsearch.com/riesel2.html">List of primes k.2^n - 1 for k < 300</a>

%H <a href="/index/Pri#riesel">Index entries for sequences of n such that k*2^n-1 (or k*2^n+1) is prime</a>

%t Select[Range[5*10^3], PrimeQ[297*2^# + 1] &] (* _G. C. Greubel_, May 25 2018 *)

%o (PARI) is(n)=ispseudoprime(297*2^n+1) \\ _Charles R Greathouse IV_, Jun 13 2017

%o (Magma) [n: n in [1..3000] | IsPrime(297*2^n+1)]; // _G. C. Greubel_, May 25 2018

%K hard,nonn,more

%O 1,1

%A _N. J. A. Sloane_, Dec 29 1999

%E a(28)-a(32) from the Ray Ballinger and Wilfrid Keller link by _Robert Price_, Dec 22 2018

%E a(33) from _Jeppe Stig Nielsen_, Mar 12 2020

%E a(34)-a(36) from _Jeppe Stig Nielsen_, Dec 20 2024