login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that 279*2^k + 1 is prime.
0

%I #32 Sep 08 2022 08:45:00

%S 2,5,10,67,70,185,218,254,530,539,587,767,806,1142,1169,2098,3035,

%T 4310,8909,14150,15461,15778,15962,16711,17819,41915,78578,90047,

%U 274202,335351,430342,888782,1465658,1526518,2079167

%N Numbers k such that 279*2^k + 1 is prime.

%H Ray Ballinger and Wilfrid Keller, <a href="http://www.prothsearch.com/riesel1.html">List of primes k.2^n + 1 for k < 300</a>

%H Wilfrid Keller, <a href="http://www.prothsearch.com/riesel2.html">List of primes k*2^n - 1 for k < 300</a>

%H <a href="/index/Pri#riesel">Index entries for sequences of n such that k*2^n-1 (or k*2^n+1) is prime</a>

%t Select[Range[5*10^3], PrimeQ[279*2^# + 1] &] (* _G. C. Greubel_, May 24 2018 *)

%o (PARI) is(n)=ispseudoprime(279*2^n+1) \\ _Charles R Greathouse IV_, Jun 13 2017

%o (Magma) [n: n in [1..300] | IsPrime(279*2^n+1)]; // _G. C. Greubel_, May 24 2018

%K hard,nonn,more

%O 1,1

%A _N. J. A. Sloane_, Dec 29 1999

%E a(27)-a(34) from the Ray Ballinger and Wilfrid Keller link by _Robert Price_, Dec 20 2018

%E a(35) from _Jeppe Stig Nielsen_, May 30 2020