login
A053339
Squarefree terms of A050530 with 3 prime divisors.
1
255, 435, 455, 561, 595, 665, 705, 795, 805, 885, 957, 1001, 1105, 1295, 1309, 1335, 1463, 1495, 1551, 1605, 1615, 1645, 1729, 1749, 1855, 1885, 1947, 1955, 2001, 2055, 2065, 2091, 2093, 2185, 2235, 2345, 2387, 2405, 2465, 2555, 2703, 2717, 2755, 2821
OFFSET
1,1
LINKS
FORMULA
Numbers k = pqr such that A051953(k) = k - EulerPhi(k) is a prime of polynomial form pq + pr + qr - p - q - r + 1.
EXAMPLE
435 = 3*5*29 and 435 - Phi(435) = 3*5 + 3*29 + 5*29 - 3 - 5 - 29 + 1 = 211, the 47th prime. [corrected by Jon E. Schoenfield, May 30 2018]
MATHEMATICA
Select[Select[Range[3000], PrimeQ[#-EulerPhi[#]]&], SquareFreeQ[3] && PrimeOmega[#]==3&] (* Harvey P. Dale, Jun 23 2013 *)
PROG
(PARI) isok(n) = isprime(n-eulerphi(n)) && issquarefree(n) && (omega(n)==3); \\ Michel Marcus, May 31 2018
CROSSREFS
Sequence in context: A023690 A101745 A182221 * A031197 A043348 A031469
KEYWORD
nonn
AUTHOR
Labos Elemer, Jan 05 2000
STATUS
approved