login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficients of the '10th-order' mock theta function chi(q).
4

%I #29 Aug 02 2023 02:12:17

%S 0,1,-1,1,-2,2,-1,2,-3,3,-3,3,-4,4,-4,5,-6,7,-6,7,-9,8,-8,10,-12,13,

%T -13,13,-16,17,-16,19,-21,22,-23,25,-28,29,-30,33,-37,39,-39,42,-48,

%U 49,-50,55,-60,64,-66,70,-77,81,-82,89,-97,101,-105,112,-121,126,-131,140,-151,159,-163,173,-187,194,-202

%N Coefficients of the '10th-order' mock theta function chi(q).

%D Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 9.

%H Vaclav Kotesovec, <a href="/A053284/b053284.txt">Table of n, a(n) for n = 0..10000</a> (corrected and extended previous b-file from G. C. Greubel)

%H Youn-Seo Choi, <a href="https://doi.org/10.1007/s002220050318">Tenth order mock theta functions in Ramanujan's lost notebook</a>, Inventiones Mathematicae, 136 (1999) pp. 497-569.

%F G.f.: chi(q) = Sum_{n >= 0} (-1)^n q^(n+1)^2/((1+q)(1+q^2)...(1+q^(2n+1))).

%F a(n) ~ -(-1)^n * sqrt(phi) * exp(Pi*sqrt(n/10)) / (2*5^(1/4)*sqrt(n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - _Vaclav Kotesovec_, Jun 12 2019

%t Series[Sum[(-1)^n q^(n+1)^2/Product[1+q^k, {k, 1, 2n+1}], {n, 0, 9}], {q, 0, 100}]

%t nmax = 100; CoefficientList[Series[Sum[(-1)^k * x^((k+1)^2)/Product[1+x^j, {j, 1, 2*k+1}], {k, 0, Floor[Sqrt[nmax]]}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Jun 11 2019 *)

%Y Other '10th-order' mock theta functions are at A053281, A053282, A053283.

%K sign,easy

%O 0,5

%A _Dean Hickerson_, Dec 19 1999