login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficients of the '6th-order' mock theta function sigma(q).
9

%I #23 Jun 12 2019 09:01:52

%S 0,1,1,2,3,3,5,7,8,11,14,17,22,28,33,41,51,60,74,89,105,127,151,177,

%T 210,248,289,340,398,461,537,624,719,832,960,1101,1267,1453,1660,1899,

%U 2167,2465,2807,3190,3614,4097,4638,5237,5915,6671,7507,8450,9498

%N Coefficients of the '6th-order' mock theta function sigma(q).

%D Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 13.

%H Vaclav Kotesovec, <a href="/A053271/b053271.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from G. C. Greubel)

%H George E. Andrews and Dean Hickerson, <a href="https://doi.org/10.1016/0001-8708(91)90083-J">Ramanujan's "lost" notebook VII: The sixth order mock theta functions</a>, Advances in Mathematics, 89 (1991) 60-105.

%F G.f.: sigma(q) = Sum_{n >= 0} q^((n+1)(n+2)/2) (1+q)(1+q^2)...(1+q^n)/((1-q)(1-q^3)...(1-q^(2n+1))).

%F a(n) ~ exp(Pi*sqrt(n/3)) / (4*sqrt(3*n)). - _Vaclav Kotesovec_, Jun 12 2019

%t Series[Sum[q^((n+1)(n+2)/2) Product[1+q^k, {k, 1, n}]/Product[1-q^k, {k, 1, 2n+1, 2}], {n, 0, 12}], {q, 0, 100}]

%t nmax = 100; CoefficientList[Series[Sum[x^((k+1)*(k+2)/2) * Product[1+x^j, {j, 1, k}]/Product[1-x^j, {j, 1, 2*k+1, 2}], {k, 0, Floor[Sqrt[2*nmax]]}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Jun 12 2019 *)

%Y Other '6th-order' mock theta functions are at A053268, A053269, A053270, A053272, A053273, A053274.

%K nonn,easy

%O 0,4

%A _Dean Hickerson_, Dec 19 1999