login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficients of the '5th-order' mock theta function f_1(q).
12

%I #30 Jan 08 2024 14:30:08

%S 1,0,1,-1,1,-1,2,-2,1,-1,2,-2,2,-2,2,-3,3,-2,3,-4,4,-4,4,-5,5,-4,5,-6,

%T 6,-6,7,-8,7,-7,8,-9,10,-9,10,-12,11,-11,13,-14,14,-15,16,-17,17,-16,

%U 19,-21,20,-21,23,-25,25,-25,27,-29,30,-30,32,-35,35,-35,39,-41,41,-43,45,-49,50,-49,53,-57,58,-59,63,-67,68

%N Coefficients of the '5th-order' mock theta function f_1(q).

%D Srinivasa Ramanujan, Collected Papers, Chelsea, New York, 1962, pp. 354-355.

%D Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, pp. 19, 22.

%H Vaclav Kotesovec, <a href="/A053257/b053257.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from G. C. Greubel)

%H George E. Andrews, <a href="http://dx.doi.org/10.1090/S0002-9947-1986-0814916-2">The fifth and seventh order mock theta functions</a>, Trans. Amer. Math. Soc., 293 (1986) 113-134.

%H George E. Andrews and Frank G. Garvan, <a href="https://doi.org/10.1016/0001-8708(89)90070-4">Ramanujan's "lost" notebook VI: The mock theta conjectures</a>, Advances in Mathematics, 73 (1989) 242-255.

%H Dean Hickerson, <a href="http://gdz.sub.uni-goettingen.de/dms/resolveppn/?PPN=GDZPPN00210590X">A proof of the mock theta conjectures</a>, Inventiones Mathematicae, 94 (1988) 639-660.

%H George N. Watson, <a href="https://doi.org/10.1112/plms/s2-42.1.274">The mock theta functions (2)</a>, Proc. London Math. Soc., series 2, 42 (1937) 274-304.

%F G.f.: f_1(q) = Sum_{n>=0} q^(n^2+n)/((1+q)(1+q^2)...(1+q^n)).

%F Consider partitions of n into parts differing by at least 2 and with smallest part at least 2. a(n) is the number of them with largest part even minus number with largest part odd.

%F a(n) ~ (-1)^n * sqrt(phi) * exp(Pi*sqrt(n/15)) / (2*5^(1/4)*sqrt(n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - _Vaclav Kotesovec_, Jun 15 2019

%t Series[Sum[q^(n^2+n)/Product[1+q^k, {k, 1, n}], {n, 0, 9}], {q, 0, 100}]

%t nmax = 100; CoefficientList[Series[Sum[x^(k^2+k) / Product[1+x^j, {j, 1, k}], {k, 0, Floor[Sqrt[nmax]]}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Jun 15 2019 *)

%Y Other '5th-order' mock theta functions are at A053256, A053258, A053259, A053260, A053261, A053262, A053263, A053264, A053265, A053266, A053267.

%K sign,easy

%O 0,7

%A _Dean Hickerson_, Dec 19 1999