Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #40 Aug 12 2023 23:00:17
%S 1,1,0,-1,1,1,-1,-1,0,2,0,-2,1,1,-1,-2,1,3,-1,-2,1,2,-2,-3,1,4,0,-4,2,
%T 3,-2,-4,1,5,-2,-5,3,5,-3,-5,2,7,-2,-7,3,6,-4,-8,3,9,-2,-9,5,9,-5,-10,
%U 3,12,-4,-12,5,11,-6,-13,6,16,-6,-15,7,15,-8,-17,7,19,-6,-20,9,19,-10,-22,8,25,-9,-25,12,25,-12,-27,11,31
%N Coefficients of the '3rd-order' mock theta function phi(q).
%D N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 55, Eq. (26.12), p. 58, Eq. (26.56).
%D Srinivasa Ramanujan, Collected Papers, Chelsea, New York, 1962, pp. 354-355
%D Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, pp. 17, 31.
%H T. D. Noe, <a href="/A053250/b053250.txt">Table of n, a(n) for n = 0..1000</a>
%H Leila A. Dragonette, <a href="http://dx.doi.org/10.1090/S0002-9947-1952-0049927-8">Some asymptotic formulas for the mock theta series of Ramanujan</a>, Trans. Amer. Math. Soc., 72 (1952) 474-500.
%H John F. R. Duncan, Michael J. Griffin and Ken Ono, <a href="http://arxiv.org/abs/1503.01472">Proof of the Umbral Moonshine Conjecture</a>, arXiv:1503.01472 [math.RT], 2015.
%H A. Folsom, K. Ono and R. C. Rhoades, <a href="http://math.stanford.edu/~rhoades/FILES/ramanujans_radial.pdf">Ramanujan's radial limits, 2013</a>. - From _N. J. A. Sloane_, Feb 09 2013
%H George N. Watson, <a href="http://jlms.oxfordjournals.org/content/s1-11/1/55.extract">The final problem: an account of the mock theta functions</a>, J. London Math. Soc., 11 (1936) 55-80.
%F Consider partitions of n into distinct odd parts. a(n) = number of them for which the largest part minus twice the number of parts is == 3 (mod 4) minus the number for which it is == 1 (mod 4).
%F a(n) = (-1)^n*(A027358(n)-A027357(n)). - _Vladeta Jovovic_, Mar 12 2006
%F G.f.: 1 + Sum_{k>0} x^k^2 / ((1 + x^2) (1 + x^4) ... (1 + x^(2*k))).
%F G.f. 1 + Sum_{n >= 0} x^(2*n+1)*Product_{k = 1..n} (x^(2*k-1) - 1) (Folsom et al.). Cf. A207569 and A215066. - _Peter Bala_, May 16 2017
%e G.f. = 1 + x - x^3 + x^4 + x^5 - x^6 - x^7 + 2*x^9 - 2*x^11 + x^12 + x^13 - x^14 + ...
%p f:=n->q^(n^2)/mul((1+q^(2*i)),i=1..n); add(f(n),n=0..10);
%t Series[Sum[q^n^2/Product[1+q^(2k), {k, 1, n}], {n, 0, 10}], {q, 0, 100}]
%t a[ n_] := SeriesCoefficient[ Sum[ x^k^2 / QPochhammer[ -x^2, x^2, k], {k, 0, Sqrt@ n}], {x, 0, n}]; (* _Michael Somos_, Jul 09 2015 *)
%o (PARI) {a(n) = my(t); if(n<0, 0, t = 1 + O(x^n); polcoeff( sum(k=1, sqrtint(n), t *= x^(2*k - 1) / (1 + x^(2*k)) + O(x^(n - (k-1)^2 + 1)), 1), n))}; /* _Michael Somos_, Jul 16 2007 */
%Y Other '3rd-order' mock theta functions are at A000025, A053251, A053252, A053253, A053254, A053255.
%Y Cf. A207569, A215066.
%K sign,easy
%O 0,10
%A _Dean Hickerson_, Dec 19 1999