Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Jul 07 2015 04:29:08
%S 1,1,2,3,18,45,360,1575,20790,99225,1332450,9823275,181496700,
%T 1404728325,26221595400,273922023375,7196040101250,69850115960625,
%U 1662139682453250,22561587455281875,675158520854317500,9002073394657468125,259715927440434465000
%N Number of level permutations of degree n.
%C A permutation is level if the powers of 2 dividing its cycle lengths are all equal.
%C For odd n, level permutations of degree n are just permutations that have odd order, i.e., A053195(2*n+1) = A000246(2*n+1). - _Vladeta Jovovic_, Sep 29 2004
%H Alois P. Heinz, <a href="/A053195/b053195.txt">Table of n, a(n) for n = 0..400</a>
%H L. Babai and P. J. Cameron, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v7i1r38/0">Automorphisms and enumeration of switching classes of tournaments</a>, Electron. J. Combin., 7 (2000), no. 1, Research Paper 38, 25 pp.
%p with(combinat):
%p b:= proc(n, i, p) option remember; `if`(n=0, 1, `if`(i<1, 0,
%p add(multinomial(n, n-i*j, i$j)/j!*(i-1)!^j*
%p b(n-i*j, i-2*p, p), j=0..n/i)))
%p end:
%p a:= n-> (m-> `if`(n=0, 1, add(b(n, (h-> h-1+irem(h, 2)
%p )(iquo(n, 2^j))*2^j, 2^j), j=0..m)))(ilog2(n)):
%p seq(a(n), n=0..25); # _Alois P. Heinz_, Jun 11 2015
%t multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, p_] := b[n, i, p] = If[n == 0, 1, If[i<1, 0, Sum[multinomial[n, Join[{n-i*j}, Array[i&, j]]]/j!*(i-1)!^j*b[n - i*j, i-2*p, p], {j, 0, n/i}]]]; a[n_] := Function[{m}, If[n == 0, 1, Sum[ b[n, Function [{h}, h - 1 + Mod[h, 2]][Quotient[n, 2^j]]*2^j, 2^j], {j, 0, m}]]][Log[2, n] // Floor]; Table[a[n], {n, 0, 25}] (* _Jean-François Alcover_, Jul 07 2015, after _Alois P. Heinz_ *)
%Y Cf. A049313, A053197.
%K nonn,nice
%O 0,3
%A _Vladeta Jovovic_, Mar 02 2000
%E a(0)=1 prepended by _Alois P. Heinz_, Jun 11 2015