login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

F^3-convex polyominoes on the honeycomb lattice by number of cells.
1

%I #23 Oct 13 2013 03:28:37

%S 1,3,5,6,9,11,10,15,18,14,21,23,18,30,29,21,33,35,31,39,41,30,42,54,

%T 35,51,53,38,66,54,42,63,65,60,69,70,43,75,90,54,81,83,63,93,89,62,90,

%U 95,84,99,90,77,105,126,74,111,113,60,138,119,91,126,125,108

%N F^3-convex polyominoes on the honeycomb lattice by number of cells.

%C The polyominoes are counted up to translations but not rotations and reflections. Thus, the unique domino with two cells is counted three times for its three orientations. - _Michael Somos_, Jun 21 2012

%D Fouad Ibn-Majdoub-Hassani. Combinatoire de polyominos et des tableaux decales oscillants. These de Doctorat. Laboratoire de Recherche en Informatique, Universite Paris-Sud XI, France.

%D Alain Denise, Christoph Durr and Fouad Ibn-Majdoub-Hassani. Enumeration et generation aleatoire de polyominos convexes en reseau hexagonal (French) [enumeration and random generation of convex polyominoes in the honeycomb lattice]. In Proceedings of 9th Conference on Formal Power Series and Algebraic Combinatorics, pages 222-234, 1997.

%H Alain Denise, Christoph Duerr and Fouad Ibn-Majdoub-Hassani <a href="http://www.fpsac.org/FPSAC97/ARTICLES/Denise.ps.gz">Enumeration et generation aleatoire de polyominos convexes en reseau hexagonal (French)</a>

%F Expansion of F^3(1, 1, q, 1) in powers of q where F^3(x, y, q, t) is the generating function defined in the FPSAC97 article. - _Michael Somos_, Jun 20 2012

%F G.f.: sum_{n >= 1} sum{d|n} b_d^2 * x^d * (1 + sign(n-d)), where b_0 = 0 and

%F b_i = x^binomial(i, 2) * sum_{k=1}^{i} x^(-binomial(i, 2)) for i >= 1 [corrected by _Michael Somos_, Jun 21 2012]

%e x + 3*x^2 + 5*x^3 + 6*x^4 + 9*x^5 + 11*x^6 + 10*x^7 + 15*x^8 + 18*x^9 + ...

%e +---+

%e | o | a(1) = 1

%e +---------------+

%e | o o | o | o | a(2) = 3

%e | | o | o |

%e +-------------------------------+

%e | o | o o | | o | o |

%e | o o | o | o o o | o | o | a(3) = 5

%e | | | | o | o |

%e +-------------------------------------------+

%e | | o | o | o | | |

%e | o o o o | o | o | o o | o o | o o | a(4) = 6

%e | | o | o | o | o o | o o |

%e | | o | o | | | |

%e +-------------------------------------------+

%e - _Michael Somos_, Jun 21 2012

%o (PARI) {a(n) = local(m = 4*n); if( n<1, 0, (-1)^n / 2 * polcoeff( sum( k=1, m, k * kronecker( 2, k) * if( k%4 == 3, x^k, x^(3*k)) / (1 + x^(4*k)), O(x^m)), m - 1))} /* _Michael Somos_, Jun 20 2012 */

%o (PARI) {a(n) = if( n<1, 0, polcoeff( sum( i=1, n, x^i * (1 + x^i) / (1 - x^i) * ( sum( k=1, i, x^((i - k) * (i + k - 1)/2), x * O(x^(n - i))))^2 ), n))} /* _Michael Somos_, Jun 21 2012 */

%K nonn

%O 1,2

%A _Fouad IBN MAJDOUB HASSANI_, Feb 28 2000