login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = smallest integer m such that Sum_{k=1..m} prime(k) is divisible by n.
5

%I #36 Jun 02 2024 13:47:18

%S 1,1,10,5,2,57,5,11,20,3,8,97,49,5,57,11,4,113,23,9,40,17,23,99,9,49,

%T 26,5,7,57,39,11,76,13,180,119,29,23,119,11,6,305,10,17,242,23,39,119,

%U 40,9,179,49,25,187,17,115,70,7,30,103,151,39,40,171,131,175,38,37,52,209,19

%N a(n) = smallest integer m such that Sum_{k=1..m} prime(k) is divisible by n.

%C It follows from a theorem of Daniel Shiu that m always exists. See A111287 for details. - _N. J. A. Sloane_, Nov 05 2005

%D Felice Russo, A set of new Smarandache functions, sequences and conjectures in number theory, American Research Press 2000

%H Alois P. Heinz, <a href="/A053050/b053050.txt">Table of n, a(n) for n = 1..20000</a> (first 1000 terms from T. D. Noe)

%H D. K. L. Shiu, <a href="http://dx.doi.org/10.1112/S0024610799007863">Strings of Congruent Primes</a>, J. Lond. Math. Soc. 61 (2) (2000) 359-373 [<a href="http://www.ams.org/mathscinet-getitem?mr=1760689">MR1760689</a>]

%F A007504(a(n))/n = A308749(n). - _Alois P. Heinz_, Jun 21 2019

%p read transforms; M:=1000; p0:=[seq(ithprime(i),i=1..M)]; q0:=PSUM(p0); w:=[]; for n from 1 to M do p:=n; hit := 0; for i from 1 to M do if q0[i] mod p = 0 then w:=[op(w),i]; hit:=1; break; fi; od: if hit = 0 then break; fi; od: w;

%t Transpose[With[{aprs=Thread[{Range[500],Accumulate[Prime[Range[ 500]]]}]}, Flatten[Table[ Select[ aprs,Divisible[Last[#],n]&,1],{n,80}],1]]][[1]] (* _Harvey P. Dale_, Dec 14 2011 *)

%o (Haskell)

%o a053050 n = head [k | (k, x) <- zip [1..] a007504_list, mod x n == 0]

%o -- _Reinhard Zumkeller_, Oct 04 2015, Feb 10 2012

%Y Cf. A007504, A111287, A002034, A011772.

%Y Cf. A045985, A308749.

%K easy,nice,nonn

%O 1,3

%A _Felice Russo_, Feb 25 2000

%E More terms from _N. J. A. Sloane_, Nov 05 2005