Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Jul 30 2024 05:35:14
%S 5,10,13,17,25,26,34,37,50,53,61,65,73,74,85,89,97,106,109,113,122,
%T 125,130,137,146,149,157,169,170,173,178,185,193,194,197,218,221,226,
%U 233,250,257,265,269,274,277,289,293,298,305,313,314,317,325,337,338,346
%N Numbers with 4 zeros in Fibonacci numbers mod m.
%C Conjecture: m is on this list iff m is an odd number all of whose factors are on this list or m is twice such an odd number.
%C A001176(a(n)) = A128924(a(n),1) = 4. - _Reinhard Zumkeller_, Jan 17 2014
%H Reinhard Zumkeller, <a href="/A053029/b053029.txt">Table of n, a(n) for n = 1..1000</a>
%H Brennan Benfield and Michelle Manes, <a href="https://arxiv.org/abs/2202.08986">The Fibonacci Sequence is Normal Base 10</a>, arXiv:2202.08986 [math.NT], 2022.
%H Brennan Benfield and Oliver Lippard, <a href="https://arxiv.org/abs/2407.20048">Connecting Zeros in Pisano Periods to Prime Factors of K-Fibonacci Numbers</a>, arXiv:2407.20048 [math.NT], 2024.
%H M. Renault, <a href="http://webspace.ship.edu/msrenault/fibonacci/fib.htm">Fibonacci sequence modulo m</a>
%o (Haskell)
%o a053029 n = a053029_list !! (n-1)
%o a053029_list = filter ((== 4) . a001176) [1..]
%o -- _Reinhard Zumkeller_, Jan 17 2014
%Y Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
%Y | m=1 | m=2 | m=3
%Y -----------------------------+----------+---------+---------
%Y The sequence {x(n)} | A000045 | A000129 | A006190
%Y The sequence {w(k)} | A001176 | A214027 | A322906
%Y Primes p such that w(p) = 1 | A112860* | A309580 | A309586
%Y Primes p such that w(p) = 2 | A053027 | A309581 | A309587
%Y Primes p such that w(p) = 4 | A053028 | A261580 | A309588
%Y Numbers k such that w(k) = 1 | A053031 | A309583 | A309591
%Y Numbers k such that w(k) = 2 | A053030 | A309584 | A309592
%Y Numbers k such that w(k) = 4 | this seq | A309585 | A309593
%Y * and also A053032 U {2}
%K nonn
%O 1,1
%A _Henry Bottomley_, Feb 23 2000