login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3), with a(0)=a(1)=1, a(2)=4.
5

%I #26 Sep 08 2022 08:45:00

%S 1,1,4,4,13,13,40,40,121,121,364,364,1093,1093,3280,3280,9841,9841,

%T 29524,29524,88573,88573,265720,265720,797161,797161,2391484,2391484,

%U 7174453,7174453,21523360,21523360,64570081,64570081,193710244

%N a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3), with a(0)=a(1)=1, a(2)=4.

%H G. C. Greubel, <a href="/A052993/b052993.txt">Table of n, a(n) for n = 0..1000</a>

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=1069">Encyclopedia of Combinatorial Structures 1069</a>

%H László Németh and László Szalay, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL24/Nemeth/nemeth8.html">Sequences Involving Square Zig-Zag Shapes</a>, J. Int. Seq., Vol. 24 (2021), Article 21.5.2.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,3,-3).

%F G.f.: 1/((1-3*x^2)*(1-x)).

%F a(n+2) = 3*a(n) + 1, where a(0) = a(1) = 1.

%F a(n) = -1/2 + Sum((1/4)*(1+3*_alpha)*_alpha^(-1-n), _alpha = RootOf(-1 + 3*_Z^2)).

%F a(n) = Sum{k=0..n} 3^(k/2)*(1-(-1)^k)/(2*sqrt(3)). - _Paul Barry_, Jul 28 2004

%F a(n) = (3^(1+floor((n-1)/2)) - 1)/2. - _Federico Provvedi_, Nov 22 2018

%F a(n)-a(n-1) = A254006(n). - _R. J. Mathar_, Feb 27 2019

%p spec := [S,{S=Prod(Sequence(Prod(Union(Z,Z,Z),Z)),Sequence(Z))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);

%t (3^(1+Floor[(Range@40-1)/2])-1)/2 (* _Federico Provvedi_, Nov 22 2018 *)

%t LinearRecurrence[{1,3,-3}, {1,1,4}, 30] (* or *) RecurrenceTable[{a[n + 2] == 3*a[n] + 1, a[0] == 1, a[1] == 1}, a, {n,0,30}] (* _G. C. Greubel_, Nov 21 2018 *)

%o (PARI) x='x+O('x^30); Vec(1/((1-3*x^2)*(1-x))) \\ _G. C. Greubel_, Nov 21 2018

%o (Magma) I:=[1,1,4]; [n le 3 select I[n] else Self(n-1) +3*Self(n-2) -3*Self(n-3): n in [1..30]]; // _G. C. Greubel_, Nov 21 2018

%o (Sage) s=(1/((1-3*x^2)*(1-x))).series(x,30); s.coefficients(x, sparse=False) # _G. C. Greubel_, Nov 21 2018

%Y Cf. A062318.

%K easy,nonn

%O 0,3

%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000

%E More terms from _James A. Sellers_, Jun 06 2000