login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of ( 1-x ) / ( 1-2*x-2*x^2+x^4 ).
0

%I #21 Apr 18 2017 07:04:20

%S 1,1,4,10,27,73,196,528,1421,3825,10296,27714,74599,200801,540504,

%T 1454896,3916201,10541393,28374684,76377258,205587683,553388489,

%U 1489577660,4009555040,10792677717,29051077025,78197931824,210488462658,566580111247,1525086070785

%N Expansion of ( 1-x ) / ( 1-2*x-2*x^2+x^4 ).

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=1055">Encyclopedia of Combinatorial Structures 1055</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,2,0,-1).

%F G.f.: (1-x)/(1-2*x-2*x^2+x^4).

%F Recurrence: {a(1)=1, a(0)=1, a(2)=4, a(3)=10, a(n)-2*a(n+2)-2*a(n+3)+a(n+4)=0}.

%F Sum(-1/182*(-35*_alpha+2*_alpha^3+22*_alpha^2-25)*_alpha^(-1-n), _alpha=RootOf(1-2*_Z-2*_Z^2+_Z^4)).

%p spec := [S,{S=Sequence(Prod(Union(Prod(Z,Z),Z),Union(Sequence(Z),Z)))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);

%t CoefficientList[Series[(1 - x)/(1 - 2*x - 2*x^2 + x^4), {x, 0, 30}], x] (* _Wesley Ivan Hurt_, Nov 13 2014 *)

%t LinearRecurrence[{2,2,0,-1},{1,1,4,10},30] (* _Harvey P. Dale_, Oct 03 2016 *)

%K easy,nonn

%O 0,3

%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000

%E More terms from _James A. Sellers_, Jun 06 2000