Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Oct 18 2019 14:48:20
%S 1,2,6,18,52,154,452,1330,3912,11506,33844,99546,292800,861226,
%T 2533164,7450914,21915720,64461730,189604292,557691946,1640365328,
%U 4824883034,14191653468,41742572146,122779374040,361136698450,1062228212084
%N Expansion of (1-x)(1+x)/(1-2*x-3*x^2+2*x^4).
%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=1051">Encyclopedia of Combinatorial Structures 1051</a>
%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (2,3,0,-2)
%F G.f.: -(-1+x^2)/(1-3*x^2+2*x^4-2*x)
%F Recurrence: {a(0)=1, a(1)=2, a(2)=6, a(3)=18, 2*a(n)-3*a(n+2)-2*a(n+3)+a(n+4)=0}
%F Sum(-1/22*(-3-7*_alpha+4*_alpha^3)*_alpha^(-1-n), _alpha=RootOf(1-3*_Z^2+2*_Z^4-2*_Z))
%p spec := [S,{S=Sequence(Prod(Union(Sequence(Prod(Z,Z)),Z),Union(Z,Z)))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
%t CoefficientList[Series[(1-x)(1+x)/(1-2x-3x^2+2x^4),{x,0,30}],x] (* or *) LinearRecurrence[{2,3,0,-2},{1,2,6,18},30] (* _Harvey P. Dale_, Oct 18 2019 *)
%K easy,nonn
%O 0,2
%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000
%E More terms from _James A. Sellers_, Jun 06 2000