Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #49 May 14 2024 17:26:58
%S 1,2,5,14,40,115,331,953,2744,7901,22750,65506,188617,543101,1563797,
%T 4502774,12965221,37331866,107492824,309513251,891207887,2566130837,
%U 7388879260,21275429893,61260158842,176391597266,507899361905
%N a(0)=1, a(1)=2, a(2)=5, a(n) = 3*a(n+2) - a(n+3).
%C Equals the INVERT transform of the Pell sequence prefaced with a "1": (1, 1, 2, 5, 12, 29, ...). - _Gary W. Adamson_, May 01 2009
%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=1034">Encyclopedia of Combinatorial Structures 1034</a>
%H Elena Barcucci, Antonio Bernini, and Renzo Pinzani, <a href="https://doi.org/10.1051/ita/2024007">Sequences from Fibonacci to Catalan: A combinatorial interpretation via Dyck paths</a>, RAIRO-Theor. Inf. Appl. (2024) Vol. 58, Art. No. 8. See p. 14.
%H Jean-Luc Baril, Pamela E. Harris, and José L. Ramírez, <a href="https://arxiv.org/abs/2405.05357">Flattened Catalan Words</a>, arXiv:2405.05357 [math.CO], 2024. See p. 14.
%H Sergey Kitaev, Jeffrey Remmel, and Mark Tiefenbruck, <a href="https://www.emis.de/journals/INTEGERS/papers/p16/p16.Abstract.html">Quadrant Marked Mesh Patterns in 132-Avoiding Permutations II</a>, Electronic Journal of Combinatorial Number Theory, Volume 15 #A16; <a href="http://arxiv.org/abs/1302.2274">arXiv preprint</a>, arXiv:1302.2274 [math.CO], 2013.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,0,-1).
%F G.f.: -(-1+x+x^2)/(1-3*x+x^3).
%F a(n) = Sum((1/9)*(1+2*_alpha+_alpha^2)*_alpha^(-1-n), _alpha=RootOf(1-3*_Z+_Z^3)). [in Maple notation]
%F a(n)/a(n-1) tends to 2.8793852... = 1/(2*cos(4*Pi/9)), a root of x^3 -3x^2 + 1 (the characteristic polynomial of the 3 X 3 matrix). The latter polynomial is a factor (with (x + 1)) of the 4th degree polynomial of A066170: x^4 - 2x^3 - 3x^2 + x + 1. Given the 3 X 3 matrix [0 1 0 / 0 0 1 / -1 0 3], (M^n)*[1 1 1] = [a(n-2), a(n-1), a(n)]. - _Gary W. Adamson_, Feb 29 2004
%F a(n) = A076264(n)-A076264(n-1)-A076264(n-2). - _R. J. Mathar_, Feb 27 2019
%p spec := [S,{S=Sequence(Union(Prod(Sequence(Union(Prod(Z,Z),Z)),Z),Z))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
%t LinearRecurrence[{3,0,-1},{1,2,5},30] (* _Harvey P. Dale_, Dec 26 2015 *)
%Y Cf. A066170, A076264.
%K easy,nonn
%O 0,2
%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000
%E More terms from _James A. Sellers_, Jun 05 2000